1319

RATE OF DECAY OF FISSION PRODUCTS

Fig. 1. The ratio of average β-energy to maximum
B-nergy on the basis of Fermi's formula for the energy
distribution in an allowed transition. Efect of Coulomb
expression for two successive values of Z and is, herefore,
 This decreases as Z increases in the course of

The above expression is supposed to hold for isobars with odd mass number A. If A is even, the isobars with odd Z (containing an odd numner of protons and also an odd number of contents than the isobars with even Z (containing an even number of protons and an even number of neutrons). This can be expressed mathematically by using, in case of even n, the
 with even Z and another expression $a\left(Z_{0}-Z\right)^{2}+b$

The value given by Bethe and Bacher and by Weizsäcker for the constant b is $40 / A+0.6 / A^{1}$

 values ${ }^{2}$ are much higher, viz. $92 / A$, which gives
$b=0.96 \mathrm{Mev}$ for the light and $b=0.66 \mathrm{Mev}$ for the heavy fragment. The actual values which

 agreement with Bohr and Wheeler. ${ }^{1}$
It follows from the above that the

It follows from the above that the energies of
successive disintegrations of fission chains with even A will not diminish of fission chains with
ticularly toward that, particularly toward the end of the series, a high
 energy disintegration, this again by a high
energy disintegration, etc. The energy of transi-

 in the next three sections.
II. RADIOACTIVE NUCLEI FORMED IMMEDIATELY

It has been assumed already in the earliest energy difference between the isobars of an odd element can be written in the form $a\left(Z_{0}-Z\right)^{2}$ umber of the isobars). Z (not necessarily

 from empirical data ${ }^{1}$ (Weizsäcker, 1935; Bethe Feenberg 1947), and also from theoretical considerations ${ }^{2}$ (Wigner, 1937). We attempted to obtain the constant a directly from the data on the disintegration energy of fission chains. We ound, however, that the relative energies of isobars are, in most cases, rather irregular func-
tions of Z, showing considerable furtur ions of Z, showing considerable fluctuations
 the a in this formula cannot be determined in any precise fashion. On the whole, we found that
$a=0.65 \mathrm{Mev}$ for the heavy fragment and 1 Mev for the light fragment represent the data as well as we could represent them. These values agree

 $V / S S){ }_{2} \dot{\text { ¢ाए }}$易
0
0
0
0
0
0
0
 ${ }^{1}$ G. Gamow, Int. Conf. on Physisc, London, 1934, Vol. I,
Nuclear Physics, $60-66$, Physical Society. W. H. Heisen.总
0
0
0

 i E. Wigner, Phys. Rev. 51, 947 (1937). Also Bicen-
tennial Symposium, University of Pennsylvania Press, tennial Symposium, University of Pennsylvania Press,
1940. W. H. Barkas, Phys. Rev. 55,69 (1939), also E.
Feenberg, reference 1. 'By the energy of disintegration we mean the sum of the
energies of all radiations (β, y, and neatrino) emitted in cascade in a transition from the normal state of the parent
to the normal Itate of the daughter. The energy of transi-

By considering the fission products as a sort of statistical R. R. Edwards, and M. H. Feldman, CL-LEG-1. A tenta grations per second and of the total energy emitted per Phys. Rev. 72, 7 (1947).) The average number of β, Prest second at any time after fission has taken place (cf. disintegrations per fission is found to be n; the average
Fig. 6). The results are in good agreement with experiment. energy of all radiations (β, γ, and neutrin) of Fig. 6). The results are in good agreement with experiment. energy of all radiations (β, γ, and neutrino) of the fission
The theoretical work is based on the assumption that the energy escapes in the form of neutrinos and a quarter is
emitted in the form of β and in the form of γ rays. A few remarks are made concerning the possible origin
of delayed neutrons. It is also pointed out that the spread of the kinetic energy of a given pair of fission fragments cannot be easily explained on the basis of differences of
chain length which result in differences in excitation energy of the fragments. It is possible that fluctuations in the
production of fission neutrons are at least partly responsible production of fission neutrons are used. Use is also made of an approximate empirical relationship between half-life and disintegration energy.
A further basic hypothesis which is important for the A further basic hypothesis which is important for short times after fission has taken place is that, in the most probable way of splitting, the chain that there is not much deviation from this most probable
mode of fission. (See L. E. Glendenin, C. D. Coryell,

The Rate of Decay of Fission Products

PHYSICAL REVIEW

after a fission has occurred, to the total energy
$B(t)$ of the β-rays which are emitted during the same time element and to the similar quantities $\boldsymbol{\gamma}(t)$ and $\Gamma(t)$ for $\boldsymbol{\gamma}$-rays.

If $N(E, t) d E$ be the number of fission products
existing at time t after fission has taken place which have disintegration energies between E and $E+d E$ and if $\lambda(E)$ be the decay constant of
nuclei with disintegration energy E, then $\beta(t)$ is given by
(1)
where E_{m} is the largest disintegration energy found. Actually, there is no unique relation
between disintegration constant and energy, as the function $\lambda(E)$ would imply. However, it will be easy to take care of this point in the course of
the calculation.

The total energy emitted at time t following a
fission is equal to the sum of the energy of the fission is equal to the sum of the energy of the
β-rays, γ-rays, and neutrinos. If one assumes that the energy of the neutrinos is twice greater
than the energy of the β-rays (cf. Fig. 1), then than the energy of the β-rays (cf. Fig. 1), then
this total energy is equal to $3 \mathrm{~B}(t)+\Gamma(t)$ and is given by
(2) nohonaoulni I
 products. The first, more accurate method describes it as the sum of radiations emitted by the accurate method considers the fission products as a sort of statistical assembly and tries to arrive at once at the total radiation from all the fission products together. While this second
method is unquestionably less complete than the first one, it is so much simpler that it is much preferable in most practical calculations. Its
validity is limited, of course, to times during which the radiation is emitted by many nuclei. At very long times after irradiation, when most of the radiation is caused by a few surviving preferable.
A complete description of the radiations would give the energy distribution of the β-rays for all function for the γ-rays. No experimental data are available which would permit one to obtain this complete information, and it will not be attempted here to obtain it theoretically. Instead, β-rays, emitted during unit time, t seconds
tion from an odd Z to an even $Z+1$ will be members of a radioactive series will not be represented by $2 a\left(Z_{0}-Z\right)-a+b$, the energy of steadily diminishing, but, particularly toward transition from an even Z to an odd $Z+1$ by $2 a\left(Z_{0}-Z\right)-a-b$ the end of the series, a high energy disintegration will be followed by a low energy disintegration, This results in an alternation in the half, etc. such that a long-lived element will be followed such that a long-lived element will be followed lived element, etc. As mentioned before, this will be particularly true toward the end of a series while towards the beginning of the series the energies will be successively diminishing and the lifetimes increasing. In the present case (even A) ifetimes increasing. In the present case (even A)
one is not justified any more to consider all nuclei as being immediately formed by the fission as being immediately formed by the fission.
However, if a short-lived nucleus is the daughter of a long-lived nucleus, the lifetime of the shortof a long-lived nucleus, the lifecime of the shorthistory of the short-lived nucleus will be aphistory of the short-lived nucleus will be apparent. Hence the even-even nuclei (even number of protons and even number of neutrons) may be considered to be immediately formed by fission in the same sense as all odd-mass nuclei were.

(b)

Fig. 2. All fission products with odd masses can be considered to be formed immediately upon fission. Of the fission The disintegrations of the daughters of these nuclei (which have odd charges) will be considered to occur simultaneously with the disintegrations of the parents. Ins Fig. 2a o indicates nuctei if formed ime ingiately in fosion.". .o are odd-odd daughters whose b ."
4"Nuclei formed in fission: decay char
Project, Rev. Mod. Phys. 18, 513 (1946).

Among the odd-odd nuclei (odd number of Among the odd-odd nuclei (odd number of
protons and neutrons) only those will be considered to be formed immediately upon fission which actually are, i.e., the first upon fission chain if that frrst member is odd odd On the other hand, all odd-odd nuclei which are daughters of even-even nuclei will be assumed to disintegrate immediately after the disintegration of their parent. These parents will have a rela tively long lifetime, corresponding to a relatively low real disintegration energy $E=2 a\left(Z_{0}-Z\right)$ $-a-b$ but, for that lifetime, will have an abhormally high effective disintegration energy, namely, the sum of their own and their daugh ters' disintegration energy:
$\left[2 a\left(Z_{0}-Z\right)-a-b\right]+\left[2 a\left(Z_{0}-Z+1\right)-a+b\right]$

$$
=2 E-2 a+2 b .
$$

III. The distribution function $\boldsymbol{N}(E, t)$: GLENDENIN'S RULE
One would think, offhand, that the most probable way of splitting of a nucleus into two ragments is the one in which the kinetic energy f the fragments can be highest. Therefore, if the splitting occurs into the two masses, A_{L}^{\prime} and A_{H} (L and H refer to light and heavy fragment), one would think that the most probable Z for the light fragment would be such that the radioactive energy of the two fragments,
$E_{r}=a_{L}\left(Z_{0}\left(A_{L}\right)-Z\right)^{2}+a_{H}\left(Z_{0}\left(A_{H}\right)-92+Z\right)^{2},{ }^{\prime}$ (3) is a minimum. In (3), $Z_{0}(A)$ is the "most stable nucleus" of mass A in the sense of the preceding
section. If $a_{L}=1 \mathrm{Mev}, a_{H}=0.65 \mathrm{Mev}$, it would then follow from (3) that the most probable Z of the light fragment is given by
$\left[Z_{0}\left(A_{L}\right)-Z\right] /\left[Z_{0}\left(A_{H}\right)-92+Z\right]$
$=a_{H} / a_{L}=0.65$. (4)
Since the numerator of the left side of (4) is crudely speaking, the number of successive disin tegrations in the light chain, and the denominator the number of disintegrations in the heavy chain half as long as the heavy ligh are about It is important heavy chain
hich was used in the pabove picture writers ${ }^{5}$) is not confirme past by the present been shown ${ }^{6}$ that the light and heavy chains approximately equally long and we chains are hence that in the most pande type assum tegration, this is the case tegration, this is the case
Since, as demonstrated in Table I, $Z_{0}\left(A_{L}\right)$
$+Z_{0}\left(A_{H}\right)$ is, on the $+Z_{0}\left(A_{H}\right)$ is, on the average, about 99.0 , we can
assume that the most probable Z differs by 3.5 from $Z_{0}\left(A_{L_{2}}\right.$) and that, hence, the most by 3.5 charge of the heavy fragment is also 3.5 units smaller than the most stable 3.5 unit sme mass of the heavy fragmert the mass of the heavy fragment
Knowing the most probable charges, the question arises as to the deviations from these most probable charges. The gas sweeping experi ${ }^{\text {'E. P. Wigner and K. Way, Phys. Rev. 70, } 115 \text { (1947) }}$ M. H. Feldman, CLL-LEG.- Coryell, R. R. Edwards, and M. H. Feldman, CL'-LEG-1. A tenative explanation has
been given recently by R. D. Present, Phys. Rev. 72, 7
(1947).
※

The factor $\frac{1}{2}$ has been introduced because only The above picture holds only for odd mass numbers. Since all even-even nuclei are also
"immediately created upon fission," we can proceed with them in a similar way, except that the probability is only one-fourth that the nucleus with a given Z be even-even so that the
$P_{\circ}(E)$ must be multiplied by the further factor $P_{\bullet}(E)$ must be multiplied by the further factor
$\frac{1}{2}$ in order to obtain $P_{c e}(E)$. In addition, it must be shifted to the left by b because the disintegration energy of an even-even nucleus with given $Z_{0}-Z$ is smaller by b than the disintegra-
tion energy of an odd mass nucleus with the tion energy of an odd mass nucleus with the
 to remember that every disintegrating even-even
nucleus gives rise to two β-rays, to its own and
 during these disintegrations is not E but $2 E+2 b$

Finally, there is a chance of one-fourth that the nucleus formed immediately upon fission be odd-odd. If we continue to assume that its Z
distribution is given by (5), its energy distribution will be
(6)
half of the radioactive chains have odd masses.
The energy of the second disintegration is

The energy of the second disintegration is
$E=2 a_{L}\left(Z\left(A_{L}\right)-Z+1\right)-a_{L}=2 a_{L}\left(Z_{p}-Z+2\right.$ so that the probability that the second disintegration yield the energy E becomes
$P_{o z}(E) d E=\frac{1}{2}(0.7 / \pi)^{\frac{1}{2}}\left(2 a_{L}\right)^{-1}$
$\times \exp \left[-0.7\left(\frac{1}{2} E / a_{L}-2\right)^{2}\right] a E, \quad(8 \mathrm{~b})$
and so on. By adding the

 ight fragment. The same expression, which is shown in Fig. 3, holds for the heavy fragment
also, except that a_{B} must be substituted for a_{r}.

 our model of one definite a_{L} (or a_{H}) and a definite function (5) for the distribution of the Z.

 which connects the half-life $(\ln 2) / \lambda$ with the maximum energy of the β-ray. This is given,
according to current theories ${ }^{13}$ by $\lambda=M^{2} / 30\left[\left(E_{\beta} / m c^{2}\right)^{5}+5\left(E_{\beta} / m c^{2}\right)^{4}\right.$
 In this, M is the matrix element for the nuclear transition, $m c^{2}$ the rest energy of the electron, and E_{β} the maximum β-ray energy of the transition in question. Equation (12) is not immediately useful for two reasons: first, because it contains the unknown quantity M, and second, because
it refers to a β-transition to a definite level of the daughter nucleus, instead of referring to transi-
 this reason, the energy of a transition E_{β} occurs in it instead of the disintegration energy. In

 fifth power of E_{β}. For small E_{β}, the λ does not
drop off as rapidly as the fifth-power law would drop off as rapidly as the fifth-power law would indicate, so that one would be inclined, when
giving a global expression for λ as a function of

 of the disintegration is the sum of the prob-
abilities of the transitions to all possible levels of
 there are more final levels available if the energy of disintegration is greater. Also, among the more numerous levels of the daughter nucleus in the case of high E, there is more likelihood to find
one with a particularly large M. As a result one one with a particularly large M. As a result, one
may expect that λ is proportional to E^{2} for small

 nucleus with a definite E will have a disintegra-
tion constant which may assume any value tion constant which may assume any value
between a highest and a lowest limit. These expectations are, on the whole, corroborated by the experimental material shown in Fig. 5. This shows that there is a rather definite lower limit closed shells. Very strong evidence for similar deviations
in heavier nuclei will be given by Maria G. Mayer in a

 mass greater than that of a nucleus of mass $A-1$ and charge $Z_{0}(A-1)$ by $a\left(Z_{0}(A-1)-Z\right)^{2}$.$Z_{0}(A-1)$ is approximately equal to $Z_{0}(A)-0.45$. The mass difference of these nuclei $(A, Z$ and $A-1, Z)$ which is due to the fact that their

 One must also add $+\frac{1}{3} b$ or $-\frac{1}{2} b$, depending on whether the number of neutrons was even or odd in the neutron emitting nucleus. The energy of
disintegration which forms the neutron emitting

 unlikely condition that all the disintegration energy remains in the nucleus A, Z, then neutron

 '(чәлә Z 'рро \forall) \cdots рн
 It follows that a delayed neutron is most likely
 results from a disintegration of a nucleus with
an odd Z. As a condition of a neutron emission we obtain, in this case,

 neutron is emitted by a nucleus near the end of a
 smooth mass formulae must be quite large to
make this possible.
"Similar deviations of the observed masses from smooth
formulae occur in light nuclei also, e.g., at the ends of

The distribution function $N(E, t)$ at time $t=0$ chain are 0.52 and 0.78 . The same numbers hold for the heavy chain. Figure 4 shows the energy distribution of the
disintegrations of both chains. This should give the energy spectrum of disintegrations in a steadily running chain reacting unit. Of course, the energy spectrum of disintegration is not an immediately observable quantity because a disintegration contains, in general, β-rays, γ-rays, and
neutrinos. Nevertheless, this curve may have some interest. For this reason, it also contains the odd-odd nuclei which are daughters and, according to our picture, are not "immediately lormed upon fission." For even-even nuclei, it i.e., the sum of the energies of even even parent and odd-odd daughter

Before leaving this subject we wish to attract attention to one more circumstance. ${ }^{11}$ The mass
formulae clearly permit one to calculate the
binding energy of a neutron, which is an important quantity from the point of view of the so-called "delayed" neutron emission. This is the emission of a neutron by a nucleus, after the nucleus is formed by a β-disintegration. Let us V ssew jo snəpnu е јо дечұ иеч дәteals s! sseu

The same holds for the heavy fragment. Hence
$b_{L}=2.8 \mathrm{Mev}, b_{\mathrm{H}}=1.8 \mathrm{Mev}$. This method of deter$b_{L}=2.8 \mathrm{Mev}, b_{H}=1.8 \mathrm{Mev}$. This method of determining b is only apparently different from that of.
Bohr and Wheeler. ${ }^{1}$ The average number of odd radioactive nuclei in the light (or heavy) fission chain is 1.75 , the average number of even-even
$N(E, t)=\left[P_{o}(E)+P_{s t}(E)+P_{o o}(E)\right] e^{-\lambda(B) t}$.
The average number of β-rays emitted by the light chain is the integral of $P_{o}(E) d E$ (which is
$1 \times 3.5=1.75$) plus the integral of $P_{00}(E) d E$ (which is $\frac{1}{4}$) plus twice the integral of $P_{s e}(E) d E$. This last quantity is $\frac{1}{4} \times 3.5=0.875$ minus b_{L} $0.25 / 2 a_{L}$. Hence the average number of β-rays $0.25 / 2 a_{L}$. Hence the average number of β-rays equal to $\frac{1}{2} \times 6.1=3.05$, must be equal to
$3.05=1.75+0.25+2\left(0.875-0.25 b_{L} / 2 a_{L}\right) . \quad$ (10)
It follows that
$3.05=1.75+0.25+2\left(0.875-0.25 b_{L} / 2 a_{L}\right)$.
It follows that

$$
b_{L}=2.8 a_{L}
$$

1327

 there is at present no theoretical foundation for the measured values should rather be taken as there is at present no theoretical foundation for the measured values should rather be taken as
determining this fraction and the quantities (15) an indication that (5) is not too inaccurate for values of $Z_{0}-3.5-Z$ which are several units great. One must remember that the experimental foundation' of (5) comes largely from the region in which $Z_{0}-3.5-Z$ is negative. The situation is much more favorable for
large t. In this case, the second bracket of (15) and (15a) drops so rapidly that the values of the P for $E=0$ can be used in the first bracket. As was pointed out in Section III, the curves of Figs. 3 and 4 are most accurate in the region of
low E where they are essentially constant. We low E where they are essentially constant. We have $P_{0}=\frac{1}{4}\left(a_{L}^{-1}+a_{H}^{-1}\right) \sim 0.63(\mathrm{Mev})^{-1}, P_{00} \sim 0$,
and $P_{c e}=\frac{3}{3} P_{0} \sim 0.32(\mathrm{Mev})^{-1}$ in this region. As a and $P_{c e}=\frac{1}{3} P_{0} \sim 0.32(\mathrm{Mev})^{-1}$ in this region. As a
result, the first bracket of (15) becomes 1.27 and that of $(16 a), \quad 0.63 E+0.32(2 E-2 a+2 b)$. and that of (16a), $0.63 E+0.32(2 E-2 a+2 b)$.
Substituting these expressions for the first
 One has, after a day,
$\beta(t)=1.27 \times 9.5^{-1} t^{6 / 6}\left(x_{u}^{-1 / 5}-x_{l^{-1 / 5}}\right) 1 / 5$
$\times \int_{0}^{\infty} y^{-4 / 3} e^{-y} d y \approx 5.2 \times 10^{-0} d^{-1.2} \quad$ (19)苛
$3 \mathrm{~B}(t)+\Gamma(t)=\left(3.9 d^{-1.2}+11.7 d^{-1.4}\right)$
(e6I) 'roas/ムә $\mathrm{N},-01 \times$ where d is the time in days. For very large t the first term of (19a) predominates. The origin of this term is the disintegration of an odd-odd
nucleus, the formation of which has been long delayed because its even-even parent's disintegration energy was very small.
The variation of the number of β-particles with time as $t^{-1.2}$ depends essentially only on (13), i.e., on the proportionality of the disintegration constant with the fifth power of the disintegra-
tion energy. The $t^{-1,2}$ law follows at once from tion energy. The $t^{-1,2}$ law follows at once from
 radioactive nuclei per unit disintegration energy
range is, for small disintegration energies, independent of energy. This last circumstance follows

 Both square brackets in (15) as well as in (15a)
 the first bracket goes to zero more rapidly, at

 or if t is very large (more than one day).
In the former case,

In the former case, i.e., if t is very small, the
exponentials in the second bracket can be
 $\left(x_{l}-x_{u}\right) E^{5} l-\frac{1}{2}\left(x_{l}{ }^{2}-x_{u}{ }^{2}\right) E^{10^{2}}{ }^{2}$

$c_{0}=9.5^{-1} e^{-9} \int\left[P_{0}(E)+P_{00}(E)+2 P_{c e}(E)\right] E^{5} d E$, $c_{1}=9.5^{-1} e^{-18} \int\left[P_{0}(E)+P_{00}(E)\right.$
$\beta(t)=c_{0}-\frac{1}{2} c_{1} t \sim 0.38-2.6$ per sec. (17a)

$$
{ }^{\prime} \exists p_{01} G\left[(J)^{33} d \tau+\right.
$$

 $\left.+E_{\mathrm{ff} f} P_{\mathrm{et}}(E)\right] E^{10} d E$,
$3 \mathrm{~B}(t)+\Gamma(t)=C_{0}-\frac{1}{3} C_{1} t$
$\approx(3.8-0.61 t) \mathrm{Mev} / \mathrm{sec}$. (18a) Unfortunately, the evaluation of these integrals,

Quantity	Function of time : after fission	When valid	Reference
$\beta(t)$: Number of β-rays emitted per sec. per fission	$2.545^{-1.4}$	$10 \mathrm{~min},-4 \mathrm{hrs}$.	D. L. Hill and L. Lanzl, Metallurgical Laboratory, CP-1827, June 25, 1944.
	ct $^{-1.7-c t-1.2}$	1-100 day	J. D. Knight, Clinton Laboratories, CC-3479, May 1, 1946. PPR, 9B, 6.14.
	$c t^{-2}-t^{-2.6}$	16-240 days	E. L. Brady and A. Turkevich, Metallurgical Laboratory, CL-697, III, D6, March, 1945.
$B(b)+\Gamma(b):$ Total γ-energy and average β-energy emitted per sec . per fission in $\mathrm{Mev} / \mathrm{sec}$.	$5.1 t^{-1,2 m}$	1-100 hrs.	R. A. Day and C. V. Cannon, Clinton Laboratories, CP-2176, November 9, 1944.
	$\begin{gathered} 5.6 t^{-1,26} \\ 98.0 t^{-1,46} \end{gathered}$	$\begin{aligned} & 20 m^{-3} \text { days } \\ & 50-100 \text { days } \end{aligned}$	L. Borst, Metallurgical Laboratory, CL-697, VIII, C4.
	$29.4 t^{-1.155}$	16-340 days	E. L. Brady and A. Turkevich. See above.
$\mathbf{r}(t): \gamma$-energy emitted per sec. per fission in $\mathrm{Mev} / \mathrm{sec}$.	\sim const.	40-140 millisec.	L. D. P. King and E. Fermi, Los Alamos Laboratories, quoted in LA-253A, December 7, 1945.
	See Fig. 6.	0.1-10 sec.	J. A. Hofmann and P. B. Moon, Los Alamos Laboratories, LA-253A, April 7, 1945. I. Halpern, J. A. Hofmann, P. B. Moon, R. Perry, Los Alamos Laboratories, LA-253A, December 7, 1945.
	$0.90{ }^{-1.20}$	10 sec.-1 day	S. Katcoff, B. Finkle, N. Elliott, J. Knight, N. Sugarman, Metallurgical Laboratory, CC1128, December 11, 1943.
	$\begin{aligned} & 4.2 t^{-1.1 .1} \\ & 49.0 t^{-1.1 .1} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~m}-3 \text { days } \\ & 50-100 \text { days } \end{aligned}$	L. Borst. See above.
	ct $t^{-1.212-c t-2.0 .0}$	16-240 days	E. L. Brady and A. Turkevich. See above.

from the assumption that the disintegration by neutrinos. The total absorbable energy is only energies of successive members of a chain form $B(t)+\Gamma(t)$. For times of the order of days after an equidistant set. The same holds of the possi- fission, calculations from known β-and γ-energies bility of representing the energy liberation as the and fission yields of the different fission products sum of two terms, proportional to $t^{-1.4}$ and $t^{-1.2}$, show that $B(t)$ and $\Gamma(t)$ are approximately respectively. The present paper owes its origin equal. At these times one would thus expect to the recognition of this fact and the experi- $3 B(t)+\Gamma(t)$ to be twice $B(t)+\Gamma(t)$. Figure 6 shows that it is actually somewhat larger than which were obtained by calorimetric measurements. (See Table II for references. ${ }^{15}$) They are

 A. Turkevich and E. L. Brady. Perhaps this is caused again by the relation between λ and E. No experimental values of $\mathrm{B}(t)+\Gamma(t)$ for very short times after fission are available, but
several measurements have been made of $\Gamma(t)$ several measurements have been made of $\Gamma(t)$
alone. Figure 6 and Table II give the results. At times of the order of 0.1 sec . after fission the
value of $3 \mathrm{~B}(t)+\Gamma(t)$ is about two and one-half value of $3 \mathrm{~B}(t)+\Gamma(t)$ is about two and one-half

> INGFIGधCXG HLIM NOSIAVdNOO IN
 results. The experimental work is also listed in results. The experimental work is also listed in
Table II where analytical representations are given where possible.
The agreement bet The agreement between the theoretical $\beta(t)$ and the experimental results is seen to be fairly very short times. The fact that the theoretical curve lies above the experimental ones for the longer times is perhaps due to the approximation made in choosing the relation between λ and E. The total energy released per second per
fission, $3 \mathrm{~B}(t)+\Gamma(t)$, includes the energy carried

K. WAY ANDE. P. WIGNER

times the experimental value of $\Gamma(t)$, which is certainly very plausible. At these short times, the calculated values depend very sensitively on the values of the disintegration energies and lifetimes of the primary fission products. The agreement with experiment at these times thus lends some support to the assumptions which governed the choice of the initial energies and lifetimes which were (1) that the parabolic mass formula holds for nuclei quite far removed from the region of stability and (2) that the chance of finding a given charge on the primary fission product is given by Eq. (5).

The authors'are very much indebted to Mrs. N. Dismuke and Mrs. G. Haines for help in calculating values for the theoretical curves, and to Mrs. A. T. Monk who gave much appreeiated assistance with an earlier report on which the present one is based. They are greatly indebted also to members of the Chemistry Divitions of both Argonne and Clinton Laboratories for many helpful discussions and clarification of experimental data. This article is based on work performed under Contract No. W-35-058-eng-71 for the Manhattan Project and the Atomic Energy Commission at Clinton Labpratories.

