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1 Introduction

Quantum graphs are quite a simple model which studies behaviour of a quantum
particle on a network. First attempts to place a quantum particle to a graph
date back to 1930’s (Pauling [Pau36] studied diamagnetic properties of aromatic
molecules) and 1950’s (work of Ruedenberg and Scherr [RS53] on π-electron
behavior in aromatic molecules). The model has been developed mainly in the
last thirty years.

From a mathematical point of view this model is quite simple – it is a set of
ordinary differential equations. Hence it can be used as a toy model for various
notions. For instance, it has been used for study of quantum chaos [KS97].
Spectral and resonance properties of quantum graphs can be directly measured;
quantum graph is simulated by a microwave network, see e.g. [HBP+04].

2 Description of the model

First, we consider a metric graph Γ. It consists of the set of vertices Xj , the
set of N internal edges Ei of positive lengths lj and set of M infinite edges Ee –
halflines which can be parametrized by [0,∞). The Hilbert space of our system
consists of functions with components square integrable on each edge

H =

N⊕
i=1

L2((0, li))⊕
M⊕
i=1

L2((0,∞)) .

The vector in this Hilbert space is

ψ = (ψ1, . . . , ψN , ψN+1, . . . , ψN+M )T .

The whole structure is equipped with a second order operator, the Hamil-

tonian which acts as − d2

dx2 + V (x) with a bounded potential V (x). Potential is
located only on the internal edges. This Hamiltonian corresponds to a simplified

Hamiltonian of a quantum particle − h̄2

2m
d2

dx2 + V (x); we have chosen the set of
units in which h̄ = 1 and m = 1/2. The domain of our Hamiltonian consists of
functions in Sobolev space on the graph W 2,2(Γ) (which is an orthogonal sum
of Sobolev spaces on the edges). The function belongs to Sobolev space W k,p(e)
on the edge e if its weak derivatives up to the order k belong to Lp(e). More-
over, functions from the domain of the Hamiltonian must satisfy the coupling
conditions at the vertices

(Uj − I)Ψj + i(Uj + I)Ψ′j = 0 , (1)
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Figure 1: A flower-like graph

where Uj is a dj × dj matrix, where dj is degree of j-th vertex, I is dj × dj unit
matrix, Ψj is the vector of limits of functional values from various edges to the
j-th vertex and, similarly, Ψ′j is the vector of outgoing derivatives.

The following construction can be used to describe easily the coupling on the
whole graph. One joins all the vertices into one and obtains one-vertex “flower-
like” graph (see figure 1). The coupling on the whole graph can be described
by only one big unitary (2N + M) × (2N + M) matrix U [Kuc08, EL10] with
coupling condition

(U − I)Ψ + i(U + I)Ψ′ = 0 , (2)

This matrix describes not only the coupling but also the topology of the graph.
The flower-like model with eq. (2) will be equivalent to the multivertex graph
with eq. (1) if we choose the matrix U to be block-diagonal in the bases corre-
sponding to the topology of the graph with blocks Uj .

3 Coupling condition and their derivation

In this section we prove that the equation (2) describes all possible selfadjoint
Hamiltonians defined in the previous section.

Definition 3.1. Let L be an operator in the Hilbert space H with the scalar
product (·, ·). By its adjoint we denote the operator L∗, which acts as L∗y = y∗,
where (y, Lx) = (y∗, x) for all x ∈ D(L). The domain of L∗ consists of all y for
which the above relation holds. The operator is symmetric if (y, Lx) = (Ly, x)
and selfadjoint if L = L∗, i.e. the domains of L and L∗ coincide. A selfadjoint
operator L1 is called selfadjoint extension if D(L) ⊂ D(L1) and L = L1 on
D(L).

There has been developed a theory how to construct selfadjoint extensions,
but we will not reproduce it here. It can be found e.g. in the textbooks [BEH08,

RS75]. We define a symmetric operator H0 which acts as − d2

dx2 +Vj(x) on the j-
th edge of the flower-like graph, with domain consisting of functions in W 2,2(Γ)
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for which both functional value and the derivative vanish at the central vertex.
The domain of its adjoint is W 2,2(Γ) without any coupling conditions at the
central vertex.

We study the following skew-Hermitian form

Ω(φ, ψ) = −Ω(ψ, φ) = (H∗0φ, ψ)− (φ,H∗0ψ) .

Using integration by parts one can find that

Ω(φ, ψ) =

N+M∑
j=1

∫
ej

[
−φ̄j

′′
(x)ψj(x) + Vj(x)φ̄j(x)ψj(x)−

−
(
−φ̄j(x)ψ′′j (x) + Vj(x)φ̄j(x)ψj(x)

)]
dx =

=

N+M∑
j=1

∫
ej

(
−φ̄j

′′
(x)ψj(x) + φ̄j(x)ψ′′j (x)

)
=

=

N+M∑
j=1

(
−ψ̄j

′
(0)ψj(0) + φ̄j(0)ψ′j(0)

)
+

N∑
j=1

(
φ̄j
′
(lj)ψj(lj)− φ̄j(lj)ψ′j(lj)

)
−

−
N+M∑
j=1

∫
ej

(
−φ̄j

′
(x)ψ′j(x) + φ̄j

′
(x)ψ′j(x)

)
dx =

= Φ∗Ψ′ − Φ′∗Ψ = ω([Φ], [Ψ]) = ([Φ],J [Ψ])C4N+2M .

where ej , j = 1, . . . , N are internal edges and j = N+1, . . . , N+M are external

edges, J =

(
0 I
−I 0

)
and vectors [Φ] = (Φ,Φ′)T, [Ψ] = (Ψ,Ψ′)T contain limits

of functional values and derivatives in the central vertex. The star in the last
line of the equation denotes transposition and complex conjugation.

Definition 3.2. Let W be a subspace of C4N+2M
. We denote by W⊥ =

{[Ψ] ∈ C4N+2M
: ω([Ψ], [Φ]) = 0,∀[Φ] ∈ W}. We call the subspace W maximal

isotropic or a Lagrangian plane if W⊥ = W .

Now we prove the theorem on the coupling conditions. It has been indepen-
dently proven by Kostrykin and Schrader [KS99] and Harmer [Har00]. In the
proof of the theorem we use the simple argument from [FT00] originally based
on physical reasons.

Theorem 3.3. All selfadjoint extensions of the operator H0 can be uniquely
parametrized by the set of unitary matrices U of rank (2N +M)× (2N +M) by
the equation (2).

Proof. We will prove that the subspace is a Lagrangian plane if and only if it is
parametrized by the equation (2). First, we prove that every Lagrangian plane
is parametrized by equation (2). Necessary condition for ω([Φ], [Ψ]) = 0 for

3



all [Φ], [Ψ] ∈ W is ω([Φ], [Φ]) = 0 for all [Φ] ∈ W . Let us now compute the
following expression

‖Φ + iΦ′‖2C2N+M − ‖Φ− iΦ′‖2C2N+M =

= (Φ + iΦ′,Φ + iΦ′)C2N+M − (Φ− iΦ′,Φ− iΦ′)C2N+M =

= Φ∗Φ− iΦ′∗Φ + iΦ∗Φ′ + Φ′∗Φ′ − Φ∗Φ− iΦ′∗Φ + iΦ∗Φ′ − Φ′∗Φ′ =

= 2i[Φ∗Φ′ − Φ′∗Φ] = 2iω([Φ], [Φ]) = 0 .

Hence the norm of the vectors Φ + iΦ′ and Φ− iΦ′ must be the same and these
vectors must be related by a unitary matrix U . From the equation U(Φ+iΦ′) =
Φ− iΦ′ follows the equation (2).

Now we prove that every subspace parametrized by (2) is a Lagrangian plane.
We notice that the form ω can be rewritten as

ω([Φ], [Ψ]) = (Φ∗,Φ′∗)

(
0 I
−I 0

)(
Ψ
Ψ′

)
=

= (Φ∗,Φ′∗)

(
V −1 0

0 V −1

)(
V 0
0 V

)(
0 I
−I 0

)(
V −1 0

0 V −1

)(
V 0
0 V

)(
Ψ
Ψ′

)
=

= ((V Φ)∗, (V Φ′)∗)

(
0 I
−I 0

)(
VΨ
VΨ′

)
,

where V is a (2N +M)× (2N +M) unitary matrix. Since we can rewrite the
equation (2) as

V −1(D − I)VΨ + iV −1(D + I)VΨ′ = 0 ,

where D is a (2N + M) × (2N + M) diagonal unitary matrix, it suffices to
prove it only for diagonal matrices. If D does not have eigenvalues −1, we
obtain from the previous equation VΨ′ = i(D + I)−1(D − I)VΨ, (V Φ′)∗ =
(V Φ)∗(−i)(D∗ − I)(D∗ + I)−1 and consequently

ω([Φ], [Ψ]) = ((V Φ)∗, (V Φ)∗)

(
0 i(D + I)−1(D − I)

i(D∗ − I)(D∗ + I)−1 0

)(
VΨ
VΨ

)
.

From the unitary properties of D we have

(D+I)(D∗−I)+(D−I)(D∗+I) = DD∗−D+D∗−I+DD∗−D∗+D−I = 0

and hence for no eigenvalue -1

(D∗ − I)(D∗ + I)−1 + (D + I)−1(D − I) = 0 .

Therefore, the form ω vanishes

ω([Φ], [Ψ]) = iV Φ∗[(D∗ − I)(D∗ + I)−1 + (D + I)−1(D − I)]VΨ = 0

for every [Φ], [Ψ] satisfying (2). If D has eigenvalues −1, from the coupling
condition follows that entries of VΨ and V Φ corresponding to these eigenvalues
vanish. In the subspace corresponding to other eigenvalues, previous argument
can be used.

4



Remark 3.4. Condition ω([Φ], [Φ]) = Φ∗Φ′ − Φ′∗Φ = 0 has a simple physical
interpretation. It means that the probability current j = h̄

2mi (φ̄φ
′− φ̄′φ) through

the central vertex is conserved. We could have used in the difference ‖Φ +
ilΦ′‖2 − ‖Φ − ilΦ′‖2 with l ∈ R in the proof and obtain the coupling condition
(U − I)Ψ + il(U + I)Ψ′ = 0, but this equation can be related to an equivalent
form (U1−I)Ψ+ i(U1 +I)Ψ′ = 0 and hence does not add any degree of freedom.
The choice of l just fixes the length scale.

Remark 3.5. If we start from the flower-like graph and obtain coupling condi-
tion (2), we have for the corresponding multivertex graph a coupling conditions
which allow for “hopping” particle between vertices. If we want to get rid of it,
we need to choose the coupling matrix U to be block diagonal with respect to the
topology of the graph.

Now we describe the most common coupling conditions.

• permutation symmetric coupling conditions
This type of the condition is symmetric to the change of any two leads
emanating from the vertex. The unitary matrix is U = aJ + bI, where
J has all entries equal to one and a and b are complex constants. Using
J2 = nJ (n is a degree of a vertex) and JI = IJ = J and unitarity of the
coupling matrix we have

|a|2nJ + bāJ + ab̄J + |b|2I = I . (3)

From this we can obtain that |b| = 1 and |an + b| = 1. The first relation
obviously follows from the previous equation, the proof of the second one
is following

|an+ b|2 = |a|2n2 + ābn+ ab̄n+ |b|2 = n(|a|2n+ āb+ ab̄) + 1 = 1 ,

the term in the parentheses is zero, since the term by J in eq. (3) must be
zero.

• δ-coupling
It is a special case of permutation symmetric coupling, with the conditions

f(X ) ≡ fi(X ) = fj(X ) , for all i, j ∈ {1, . . . , n}
n∑
j=1

f ′j(X ) = αf(X ) .

The unitary matrix is U = 2
n+iαJ − I.

• standard (Kirchhoff, free, Neumann) conditions
This condition is the special kind of δ-condition for α = 0, i.e. functional
value is continuous in the vertex and sum of outgoing derivatives is equal
to 0. It is the most physical one, since the particle moves freely through
the vertex. The name Kirchhoff is not a good choice since for all selfad-
joint coupling conditions the probability current is conserved. The unitary
matrix is U = 2

nJ − I.
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• Dirichlet conditions
In this case all functional values are zero. The unitary matrix is U = −I.

• Neumann conditions
For this condition all the derivatives are zero. The unitary matrix is U = I.

4 Resolvent resonances and external complex
scaling

In the current and following section we are interested in defining the resonances
properly. By a resonance we understand a complex number. The physical mean-
ing of this number is following. If the resonance is close to the real axis, the
particle sent with the energy corresponding to its real part stays in the central
part of the graph longer than for other energies. Its life time is longer, the
closer the resonance to the real axis is. There are two main definitions of res-
onances, resolvent resonances and scattering resonances. Resolvent resonances
are poles of the meromorphic continuation of the resolvent (H − λid)−1, where
id is identity operator. The scattering resonances are poles of the continuation
of the scattering matrix. It is more convenient to study the whole problem in
the k-plane, where k2 = E.

Definition 4.1. There is a resolvent resonance at k if there is a pole of the
meromorphic continuation of the resolvent (H − k2id)−1. For the operator de-
scribed in section 2 one can define a resolvent resonance as such k, for which
there exists solution with the asymptotics αje

ikx for all halflines.

Theorem 4.2. There are resolvent resonances only for Im k ≤ 0 or for Re k = 0
(see figure 2).

Proof. We know that the wavefunction components on the halflines are gj(x) =
αje

ikx. Let there be a resolvent resonance for k = kr + iki with ki > 0. Then
there exists a solution of the Schrödinger equation on the graph with the above
behaviour on the halflines. But the function gj(x) = αje

ikrxe−kix is square
integrable

∫∞
0
|gj(x)|2 dx < ∞ and this means that k2 is an eigenvalue of the

Hamiltonian H. This contradicts the fact that the Hamiltonian is selfadjoint,
since a selfadjoint Hamiltonian has only real eigenvalues (which corresponds to
real or purely imaginary k).

Resolvent resonances can be effectively studied by the method developed in
1970’s by Aguilar, Baslev and Combes [AC71, BC71] called external complex
scaling. The idea is to perform the transformation

Uθg(x) = eθ/2g(eθx) .

on the external edges, while the internal edges are not scaled. For real θ this
transformation is unitary, but it has the desired behaviour for θ with nontriv-
ial imaginary part. We transform the Hamiltonian H to a nonselfadjoint one
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Figure 2: Resolvent resonances are only in the lower halfplane or on the imagi-
nary axis

and then prove that resolvent resonance are eigenvalues of this nonselfadjoint
operator.

Theorem 4.3. Let Hθ = UθHU−θ and fj be the wavefunction components on
the internal edges, gj wavefunction components on the external edges. Then it
acts as

Hθ

(
fj(x)
gj(x)

)
= UθHU−θ

(
fj(x)
gj(x)

)
=

(
−f ′′j (x) + Vj(x)fj(x)
−e−2θxg′′j (x)

)
Proof. Clearly, the internal edges are not scaled, for the external edges we obtain

Uθ(−d2/dx2)U−θgjθ(x) = Uθ(−d2/dx2)e−θ/2gjθ(−eθx) =

= Uθe
−2θe−θ/2g′′jθ(−eθx) = e−2θe−θ/2e−2θg′′jθ(x) = e−2θg′′jθ(x) .

Now we state a theorem on the spectrum of the scaled operator. The main
idea of the external complex scaling is to obtain resonances as eigenvalues of this
non-selfadjoint operator. The spectrum σ(T ) of the operator T can be divided
into two parts – discrete spectrum and essential spectrum. The discrete spectrum
σd(T ) is the set of eigenvalues with finite multiplicity which are isolated points
of σ(T ); the essential spectrum is its complement in σ(T ). We will show the idea
of the proof of the essential spectrum of the operator Hθ and complete proof
of the fact that resolvent resonances are for imaginary part of θ large enough
eigenvalues of Hθ.

Theorem 4.4. The essential spectrum of Hθ is e−2θ[0,∞). The resonances of
H can be obtained as eigenvalues of Hθ for Im θ large enough.
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Figure 3: Example: a halfline with an appendix

Proof. Let HDθ be operator acting as Hθ with the coupling conditions changed
to Dirichlet. Using Krein formula (which states that two selfadjoint extension of
the same operator differ only by a compact operator) and Weyl’s theorem (which
states that if two operators differ by a compact operator, then their essential
spectra are the same) one can prove that essential spectra of operators HDθ and
Hθ are the same. Since the essential spectrum of minus second derivative on the
halfline with Dirichlet coupling is [0,∞), the essential spectrum of the operator
HDθ and hence Hθ is e−2θ[0,∞).

Let k2 with k = kr + iki be a resolvent resonance with ki < 0. Then the
corresponding solution of the Schrödinger equation with the Hamiltonian H
has halfline components not square integrable. Let for simplicity be θ = iϑ,
ϑ ∈ R and large enough −ϑ < arg k < 0. The component on the j-th edge is
gjθ(x) = αje

iϑ/2exp(ikeiϑx). Since −ϑ < arg k, is Im (keiϑ) > 0 and therefore
gjθ(x) is square integrable. Therefore, the solutions of the Schrödinger equation
for H are after the scaling the eigenvalues of Hθ.

Now we show an example, which shows how to compute resolvent resonances
for a simple graph.

Example 4.5. (a line with an appendix – resolvent resonances)
Let us consider a graph consisting of an abscissa of length l and a halfline
(see figure 3). There is a Dirichlet coupling at one end of the abscissa and
δ-coupling of strength α between the abscissa and the halfline. We assume the
potential on the abscissa and the halfline to be zero. We parametrize the abscissa
by the interval (0, l) and the halfline by (0,∞) and describe the wavefunction
components by f and g, respectively. The coupling conditions can be written as

f(0) = 0 , f(l) = g(0) , −f ′(l) + g′(0) = αg(0) .

We take a general ansatz for solutions of the Schrödinger equation as

f(x) = ae−ikx + beikx , g(x) = ce−ikx + deikx .

Now we perform the scaling transformation gθ(x) = Uθg(x) = eθ/2g(eθx) with
Im θ > 0 large enough and search for eigenvalues of operator Hθ. Hence one

can take c = 0 since the scaled function ceθ/2e−ikxeθ is not square integrable.
We have

g(0) = e−θ/2gθ(0) , g′(0) = ikg(0) = ike−θ/2gθ(0) .

The coupling conditions can be rewritten as

a+ b = 0 , ae−ikl + beikl = e−θ/2gθ(0) ,

ik(ae−ikl − beikl) = (α− ik) e−θ/2gθ(0) .
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Using b = −a we have

a(e−ikl − eikl) = e−θ/2gθ(0) ,

ika(e−ikl + eikl) = (α− ik) e−θ/2gθ(0) .

Now substituting from the first equation for e−θ/2gθ(0) to the second one and
dividing the second equation by (−2i) we obtain

−ak eikl + e−ikl

2
= (α− ik)a

eikl − e−ikl

2i

which leads to the resonance condition

(α− ik) sin kl + k cos kl = 0 .

5 Scattering resonances

The second possibility how to define resonances is as poles of the meromorphic
continuation of the scattering matrix. In this view the compact part of the
graph is a scattering center and the halflines are the leads. Since we consider
zero potential on the halflines, the solution on the semiinfinite leads can be
expressed as a linear combination of e−ikx and eikx. The first one we call the
incoming wave and the second one the outgoing wave.

To elucidate why we have used this notation, let us for a while consider a
time dependent Schrödinger equation on the halfline (−∂2

x − i∂t)uj(x, t) = 0.
Its solution can be after separating the variables found in the form uj(x, t) =

e−itk
2

gj(x), where gj(x) is the solution of time independent Schrödinger equa-
tion. Substituting the combination of e−ikx and eikx we obtain uj(x) = cje

−ik(x+kt)+
dje

ik(x−kt). The first wave is incoming (for growing t the x must be smaller to
get the same exponent), the second one is outgoing.

The scattering matrix S = S(k) is the operator, which maps the vector of
amplitudes of the incoming waves into the vector of amplitudes of the outgoing
waves. The complex energies, for which its entries diverge, are called scattering
resonances.

Example 5.1. Let us now study the same example as in the case of resolvent
resonances. We again assume an abscissa of length l and a halfline in figure 3
with Dirichlet coupling at one end of the segment and δ-coupling between the
abscissa and the halfline.

f(0) = 0 , f(l) = g(0) , −f ′(l) + g′(0) = αg(0) .

We use the ansatz f(x) = ae−ikx + beikx and f(x) = ce−ikx + deikx and obtain

a+ b = 0 , ae−ikl + beikl = c+ d ,

ik(d− c) + ik(ae−ikl − beikl) = α(c+ d) .

9



Substituting b = −a we obtain

a(e−ikl − eikl) = c+ d ,

ik(d− c) + ika(e−ikl + eikl) = α(c+ d) .

Using definitions of sine and cosine and substituting now for a from the first
equation to the second we get

ik(d− c) sin kl − k cos kl(c+ d) = α(c+ d) sin kl ,

[(α− ik) sin kl + k cos kl] d = − [(α+ ik) sin kl + k cos kl] c .

We finally obtain

S(k) =
d

c
= − (α+ ik) sin kl + k cos kl

(α− ik) sin kl + k cos kl
.

The scattering matrix is in this case only a number (we have one halfline) and
its poles give the same resonance condition as resolvent resonances.

6 The equivalence of resonances

In this section we prove that for quantum graphs the two previous definitions
of resonances are equivalent. To be precise, the set of resolvent resonances is
equal to the set of scattering resonances unified with the set of eigenvalues with
corresponding eigenfunctions supported on the internal part of the graph. This
result was obtained first for certain set of coupling conditions in [EL07], for all
graphs and hedgehog manifolds it was proved in [EL13].

Theorem 6.1. Let us consider the quantum graph with the Hamiltonian defined
in section 2. Then there is a resolvent resonance at k2

0 iff there is a scattering
resonance at k2

0 or there is an eigenvalue at k2
0 with the eigenfunction supported

on the internal part of the graph.

Proof. We assume the coupling condition 2 with Ψ =

(
Ψint

Ψext

)
and Ψ′ =

(
Ψ′int

Ψ′ext

)
Since the solution on the j-th internal edge is a combination of two linearly
independent solutions ajuj(x) + bjvj(x), we have entries of the vector of func-
tional values ajuj(v) + bjvj(v) (v denotes the vertex), similarly for the vector
of derivatives aju

′
j(v) + bjv

′
j(v). For an external edge we have solution as com-

bination of incoming and outgoing wave cje
−ikx + dje

ikx, hence Ψext = c + d,
Ψ′ext = ik(d− c).

Therefore, the coupling condition 2 can be rewritten as

A(k)a +B(k)b + C(k)c +D(k)d = 0 ,

where A(k), B(k) are (2N+M)×N energy-dependent matrices, C(k), D(k) are
(2N+M)×M energy-dependent matrices and a, b, c, d are vectors with entries
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aj , bj , cj and dj . We define a (2N +M)× 2N matrix E(k) = (A(k), B(k)) and

the vector e =

(
a
b

)
corresponding to the internal coefficients. The previous

equation can be thus rewritten as

E(k)e + C(k)c +D(k)d = 0 . (4)

If E(k0) has less then 2N linearly independent rows, it means that there exist
a solution of (4) with c = d = 0, i.e. eigenvalue with eigenfunction supported
only on the internal part of the graph. We know that k2

0 ∈ R. Clearly, this
eigenvalue belongs also to the family of resolvent resonances (solutions with
c = 0).

Now we assume that E(k0) has exactly 2N linearly independent rows. We
rearrange the equations (4) so that first 2N rows of E(k0) are linearly inde-
pendent. From these first 2N equations we express e and substitute it into the
remaining M equations. We obtain

C̃(k)c + D̃(k)d = 0

with M ×M matrices C̃(k) and D̃(k). The resolvent resonances are solutions
with only outgoing waves, i.e. c = 0; this means that the resonance condition is
det D̃(k) = 0. The scattering matrix is S(k) = (D̃(k))−1C̃(k), the condition for
scattering resonances also is det D̃(k) = 0. Therefore these families of resonances
coincide.

7 Effective coupling on a finite graph

The content of this section will be used later. We will introduce effective cou-
pling equation for the graph without halflines.

Theorem 7.1. Let H be a Schrödinger operator on a quantum graph Γ with
2N internal and M external edges and coupling given by (2N +M)× (2N +M)
unitary matrix U consisting of blocks

U =

(
U1 U2

U3 U4

)
,

where the 2N × 2N matrix U1 corresponds to the coupling between internal
edges, M ×M matrix U4 corresponds to the coupling between the halflines and
2N ×M matrix U2 and M × 2N matrix U3 correspond to the mixed coupling.
Let {λi}Mi=1 be eigenvalues of U4. Then all resolvent resonances of Γ with k on
C\{λ1−1

λ1+1 , . . . ,
λM−1
λM+1} are given as eigenvalues of operator with the same action

on the internal edges as H but satisfying energy-dependent coupling conditions

(Ũ(k)− I2N )~f + i(Ũ(k) + I2N )~f ′ = 0

with
Ũ(k) = U1 − (1− k)U2[(1− k)U4 − (k + 1)IM ]−1U3 . (5)
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Proof. Let f and g denote the vector of amplitudes of functional values on the
internal and external edges, respectively and let f ′ and g′ be the vectors of
amplitudes of outgoing derivatives. Then the coupling condition (2) can be
rewritten as

(
U1 − I2N U2

U3 U4 − IM

)(
f
g

)
+ i

(
U1 + I2N U2

U3 U4 + IM

)(
f ′

g′

)
= 0 ,

where IN denotes the N ×N unit matrix. Performing external complex scaling
means replacing g and g′ by e−θ/2gθ and ike−θ/2gθ, respectively.(
U1 − I2N U2

U3 U4 − IM

)(
f

e−θ/2gθ

)
+i

(
i(U1 + I2N ) −kU2

iU3 −k(U4 + IM )

)(
f ′

e−θ/2gθ

)
= 0 .

Now eliminating gθ for det ((1− k)U4 − (k + 1)IM ) 6= 0 we get

[U1 − I2N − (1− k)U2[(1− k)U4 − (k + 1)IM ]−1U3]f+

+ [U1 + I2N − (1− k)U2[(1− k)U4 − (k + 1)IM ]−1U3]f ′ = 0

which can be written as

(Ũ(k)− I2N )f + i(Ũ(k) + I2N )f ′ = 0

with
Ũ(k) = U1 − (1− k)U2[(1− k)U4 − (k + 1)IM ]−1U3 .

We can easily show that the condition det ((1 − k)U4 − (k + 1)IM ) = 0 which

for eigenvalues means (1− k)λj − (k+ 1) = 0 implies k =
λj−1
λj+1 . With exception

of these points the construction works.

8 Asymptotics of resonances for non-magnetic
graphs

We start the main part of this text by a topic which if at the first sight different
from quantum graphs and their resonance properties. Asymptotical behaviour
of the number of eigenvalues of Laplace-Beltrami operator on a Riemannian
manifold of the dimension d is given by Weyl’s law [Wey11]. We show the result
of Ivrii from [Ivr80]. The number of eigenvalues which are in modulus smaller
than λ is given by

N(λ) =
ωd|Ω|
(2π)d

λd/2 ± ωd−1|∂Ω|
4(2π)d−1

λ(d−1)/2 + o(λ(d−1)/2) ,

where ωd stands for the volume of a d-dimensional ball with radius 1 and |Ω| and
|∂Ω| denote the volume of the manifold and volume of its boundary, respectively.
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The plus sign corresponds to the Neumann condition on the boundary of the
manifold, the minus sign to the Dirichlet condition.

Now we will get the expression for the asymptotics of the number of eigen-
values of a compact quantum graph. We will work in the k-plane, where k is the
square root of energy. The formula for the number of eigenvalues in modulus
smaller than R is

N(R) =
2V

π
R+O(1) , (6)

where V is the sum of the lengths of the (internal) edges. This result follows
from the previous equation taking λ = R2 and adding an extra factor of 2,
because we count every eigenvalue twice since (−k)2 = k2.

Our aim will be to find the asymptotical behaviour of the number of resolvent
resonances for a noncompact quantum graph. To be precise, we want the number
of resolvent resonances enclosed in the circle of radius R in the k-plane in the
limit R → ∞. We would expect that it behaves as the equation (6) with V
being the sum of the lengths of the internal edges of the graph. It holds true
for most of the graphs (we will call these graphs Weyl), but there is a class of
graphs for which the constant in the asymptotics is smaller than expected (we
denote these graphs as non-Weyl).

The behaviour of the counting function of resolvent resonances was studied
first for quantum graphs with standard condition by Davies and Pushnitski
[DP11]. They found a nice geometric condition: the graph is non-Weyl iff it has
a balanced vertex. By a balanced vertex we mean the vertex which connects the
same number of internal and external edges. Later we generalized this result to
all possible couplings in [DEL10]. We found a condition on the eigenvalues of the
effective coupling matrix in the previous section which distinguishes the Weyl
and non-Weyl graphs. In this text both results will be stated in the opposite
order. First, we prove the theorem on the general graphs and then we show the
condition by Davies and Pushnitski as its corollary.
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