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Inside a box of size L we contemplate the simplest PT -symmetric piece-wise constant
potential of size ` < L and purely imaginary strength ig and describe all its bound states
in closed form.
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Symmetric Dirichlet boundary conditions ψ(±L) = 0 make the one-dimensional
Schrödinger equation [

− d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (1)

exactly solvable in the Hermitian square-well case with V (x) = 0 and with the
well-known quadratic spectrum

En =
(nπ

2L

)2

, n = 1, 2, . . . . (2)

A “minimal” modification of this model will be studied here, with V (x) vanishing at
x ∈ (−L,−`) (“far left” region FL) and at x ∈ (`, L) (“far right” region FR). This
modification will be parity-pseudo-Hermitian (usually [1] called PT -symmetric),
i.e., we shall have V (x) = −i g at x ∈ (−`, 0) (in the “near left” region NL) and
V (x) = i g at x ∈ (0, `) (“near right” region, NR). This means that at the sufficiently
small ` or g the energies remain real, discrete and positive [2], with E = k2, k > 0.
In a way paralleling the older papers on similar models [3] this enables us to put

ψFL(x) = A∗ sin[k(L + x)], ψFR(x) = A sin[k(L− x)]

and, with a complex κ = s + it such that s ≥ 0, t ≥ 0 and g = 2st,

ψNL(x) = B∗ cosh(κ∗x) + iD∗ sinh(κ∗x) ≡ ψ∗NR(−x) .
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As long as k2 = t2 − s2 and B (as well as C = κD) must be all real, the matching
conditions

ψFR(`) = ψNR(`) ∂xψFR(`) = ∂xψNR(`)

yield finally the two complex linear algebraic equations for the four unknown real
constants B, C, Re A and Im A. Of course, their secular determinant must vanish,

k sin[2k(L− `)][s2 cosh(2s`) + t2 cos(2t`)]− cos[2k(L− `)][s3 sinh(2s`)− t3 sin(2t`)]

+st2 sinh(2s`)− s2t sin(2t`) = 0. (3)

In the regime of the weak-non-Hermiticity (and, say, in units L = 1 and under
above-mentioned constraint g = 2st) all the roots of this equation are real [2] and
determine all the energies as functions of g and `. On the boundary of the related
two-dimensional domain of parameters (g, `) the roots as well as the related pairs
of neighboring energies Em1,2 merge and become complex at the so called critical
or exceptional pairs (gc, `c) as sampled in Table 1.
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B. Bagchi, H. B́ıla, V. Jakubský, S. Mallik, C. Quesne, M. Znojil: quant-ph/0503035
(unpublished).

Table 1. Critical strength gc vs. critical range `c. Renormalized quantities 12
√

gc are fitted

by the asymptotially logarithmic function F (`c) = 2
√

(ln(1/`c))2/6 + α chosen as exact
at ` = L = 1 and, apparently, offering an upper bound at the smallest `.

`c 1.00 0.70 0.50 0.40 0.30 0.20 0.10 0.01 0.001

gc 4.475 4.813 6.436 8.601 13.43 27.27 95.83 9895. 486950.

F (`c) 1.133 1.142 1.168 1.193 1.235 1.310 1.472 2.195 3.039

12
√

gc 1.133 1.140 1.168 1.196 1.242 1.317 1.463 2.153 2.978
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