News in non-Hermitian Quantum Mechanics

Miloslav Znojil

Ústav jaderné fyziky AV ČR, 250 68 Řež, Czechia

seminář: MFF, 24. X. 2006, 10.00

PLAN OF THE TALK

- I. Introduction
- II. models on curves
- III. models on an interval
- **IV.** summary

CONTENTS OF THE TALK

- I. Introduction (2 × 2 example)
- II. models on curves ("toboggans")
- III. models on an interval (coupled square wells)
- **IV.** summary

in the other words:

- I. motivation, so called PT symmetry etc
- II. single channel: non-Hermitian harmonic oscillator etc.
- **III.** non-Hermitian coupling of channels: Klein Gordon etc.
- IV. briefly: an innovation of quantization recipes.

sleepers: **partly accessible ON WEB** and published:

- I. quant-ph/0601048, Phys. Lett. A 353 (2006) 463 468 (generalized PT symmetry).
- II. quant-ph/0502041, Phys. Lett. A 342 (2005) 36 47 and quant-ph/0606166, J. Phys. A: Math. Gen. 39 (2006) 13325 - 13336 (oscillations along complex curves).

- III. quant-ph/0511194, J. Phys. A: Math. Gen. 39 (2006)
 4047 4061 (coupled square wells) and quant-ph/0605209,
 J. Phys. A: Math. Gen. 39 (2006) 10247 10261 (discrete version: Runge Kutta oscillator).
- IV. Czechosl. J. Phys. 56 (2006) 977 984 (a concise review).

Prelude

we wish that

$$H^{\dagger} = \mathbf{R} H \, \mathbf{R}^{-1}$$

observation 1

if we wish that

$$H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1}$$

then

$$H = \left(H^{\dagger}\right)^{\dagger} = \left(\mathbf{R}^{-1}\right)^{\dagger} \quad H^{\dagger} \quad \mathbf{R}^{\dagger}$$

observation 2

if we wish that

$$H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1}$$

then

$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \quad H^{\dagger} \quad \mathbf{R}^{\dagger}$$
$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \mathbf{R} H \mathbf{R}^{-1} \mathbf{R}^{\dagger}$$

observation 3

if we wish that

$$H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1}$$

then

$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \quad H^{\dagger} \quad \mathbf{R}^{\dagger}$$
$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \mathbf{R} H \mathbf{R}^{-1} \mathbf{R}^{\dagger}$$
$$H = (H^{\dagger})^{\dagger} = \mathcal{S} \quad H \quad \mathcal{S}^{-1}$$

This means that

our H must have a **factorized** symmetry,

$$H S = S H, \qquad S = \left(\mathbf{R}^{-1}\right)^{\dagger} \mathbf{R}$$

This means that

our H must have a **factorized** symmetry,

$$H S = S H, \qquad S = \left(\mathbf{R}^{-1}\right)^{\dagger} \mathbf{R}$$

and we have two possibilities:

• either S = I (i.e., $\mathbf{R} = \mathbf{R}^{\dagger}$), pseudo-Hermiticity

This means that

our H must have a **factorized** symmetry,

$$H S = S H, \qquad S = \left(\mathbf{R}^{-1}\right)^{\dagger} \mathbf{R}$$

and we have two possibilities:

- either S = I (i.e., $\mathbf{R} = \mathbf{R}^{\dagger}$), pseudo-Hermiticity
- or $S \neq I$ ("symmetry factorization", SF).

INTRODUCTION

With $H|n\rangle = E_n|n\rangle$ and $\langle\langle n|H = E_n\langle\langle n|$, quasi-Hermiticity

$$H^{\dagger} = \Theta H \Theta^{-1}, \qquad I \neq \Theta = \Theta^{\dagger} > 0.$$

and the spectral representation of the Hamiltonian

$$H = \sum_{n} |n\rangle \frac{E_{n}}{\langle \langle n|n \rangle} \langle \langle n|$$

this leads to the multiparametric formula giving " $\mathbf{physics}$ ",

$$\Theta = \sum_{n} |n\rangle \partial \theta_n \langle \langle n|, \qquad \theta_n > 0.$$

Example – find metric Θ for a 2 × 2 Hamiltonian

$$H = \begin{pmatrix} -T & B \\ -B & T \end{pmatrix}, \quad \Theta = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$$
$$\Theta H = H^T \Theta \Longrightarrow 2bT = -B(a+d)$$
$$E \in \mathbb{R} \iff |T| \ge |B|, \quad B = T \sin \alpha$$
$$\theta_{1,2} > 0 \iff b \neq 0 \neq a + d = 2Z.$$

ambiguity:

for $a = Z(1 + \xi)$, $d = Z(1 - \xi)$ we have an **interval**,

$$1 > \sqrt{\xi^2 + \sin^2 \alpha}, \qquad \xi < \cos \alpha.$$

interpretation:

In 2D with biorthogonal "brabraket" basis,

$$\langle \langle n | H = \langle \langle n | E_n, H | n \rangle = E_n | n \rangle$$

ambiguity is compatible with the universal formula

$$\Theta = \mathbf{\Sigma} |n\rangle\rangle s_n \langle \langle n|, \quad s_k > 0.$$

MODELS ON COMPLEX CONTOURS $\mathcal{C}^{(N)}$

FIRST STEP: SPIKED HO

Miloslav Znojil,

PT symmetric harmonic oscillators

Phys. Lett. A 259 (1999) 220 - 3.

Innovation: PT-symmetric paths $\mathcal{C}^{(N)}$ N-times encircle x = 0,

$$\left(-\frac{d^2}{dx^2} + \frac{\ell(\ell+1)}{x^2} + x^2\right)\,\psi(x) = E\,\psi(x)$$

to be studied in the bound-state and scattering regime

1. along straight contour

$$\mathcal{C}^{(0)} = \{ x \mid x = t - i \varepsilon, t \in \mathbb{R} \}$$

"twice as many" bound-state levels

$$E = E_{n,\ell,\pm} = 4n + 2 \pm 2\alpha(\ell)$$

2. along loops

$$\mathcal{C}^{(N)} = \mathcal{D}^{(PTSQM, tobogganic)}_{(\varepsilon, N)}$$

new quantum theory:

on multisheeted Riemann surfaces

with, say, $\varphi \in (-(N+1)\pi, N\pi)$ in

$$\varrho(\varphi, N) = \sqrt{1 + \tan^2 \frac{\varphi + \pi/2}{2N + 1}}$$
$$\mathcal{C}^{(N)} = \left\{ x = \varepsilon \, \varrho(\varphi, N) \, e^{i\varphi} \,, \varepsilon > 0 \right\} \,.$$

What is \mathcal{PT} -symmetry in the presence of branch points?

rotation along Riemann surface.

SECOND STEP: AHOs in QES regime

Miloslav Znojil (quant-ph/0502041):

PT-symmetric quantum toboggans

Phys. Lett. A 342 (2005) 36-47.

$$\left[-\frac{d^2}{dx^2} + V(x)\right]\,\psi(x) = E\,\psi(x)$$

 $\operatorname{Re} V(x) = +\operatorname{Re} V(-x)$ and $\operatorname{Im} V(x) = -\operatorname{Im} V(-x)$.

 $\psi(\pm \operatorname{Re} L + i \operatorname{Im} L) = 0, \qquad |L| \gg 1 \quad \text{or} \quad |L| \to \infty.$

model:

$$V(x) = x^{10}$$
 + asymptotically smaller terms

 $\psi(x) = e^{-x^6/6 + \text{asymptotically smaller terms}}$

reparametrized

$$\psi(x) = \exp\left[-\frac{1}{6}\varrho^6 \cos 6\varphi + \text{asymptotically less relevant terms}\right],$$

closed formulae

$$\Omega_{(first \ right)} = \left(-\frac{\pi}{2} + \frac{\pi}{12}, -\frac{\pi}{2} + \frac{3\pi}{12}\right),$$

$$\Omega_{(first \ left)} = \left(-\frac{\pi}{2} - \frac{\pi}{12}, -\frac{\pi}{2} - \frac{3\pi}{12}\right),$$

$$\Omega_{(third \ right)} = \left(-\frac{\pi}{2} + \frac{5\pi}{12}, -\frac{\pi}{2} + \frac{7\pi}{12}\right), \dots$$

$$\dots \qquad \Omega_{(fifth \ left)} = \left(-\frac{\pi}{2} - \frac{9\pi}{12}, -\frac{\pi}{2} - \frac{11\pi}{12}\right).$$

$\mathcal{PT}\text{-symmetric transformations changing }\beta$

Initial \mathcal{PT} -symmetric model

$$\left[-\frac{d^2}{dx^2} - (ix)^2 + \lambda W(ix)\right] \psi(x) = E(\lambda) \psi(x) \,,$$

sample potential:

$$W(ix) = \sum_eta \; g_eta(ix)^eta \, .$$

change variables,

$$ix = (iy)^{\alpha}, \qquad \psi(x) = y^{\varrho} \, \varphi(y).$$

in detail:

at $\alpha > 0$ we have

$$i \, dx = i^{\alpha} \alpha y^{\alpha - 1} \, dy, \qquad \frac{(iy)^{1 - \alpha}}{\alpha} \frac{d}{dy} = \frac{d}{dx}.$$

"new" Schrödinger equation

looking complicated:

$$\begin{split} y^{1-\alpha} \frac{d}{dy} y^{1-\alpha} \frac{d}{dy} \, y^{\varrho} \, \varphi(y) + i^{2\alpha} \alpha^2 \left[-(iy)^{2\alpha} + \lambda \, W[(iy)^{\alpha}] - E(\lambda) \right] \, y^{\varrho} \, \varphi(y) = 0 \, . \end{split}$$

first term:

$$\begin{split} y^{1-\alpha} \frac{d}{dy} y^{1-\alpha} \frac{d}{dy} y^{[(\alpha-1)/2]} \,\varphi(y) = \\ &= y^{2+\varrho-2\alpha} \frac{d^2}{dy^2} \,\varphi(y) + \varrho(\varrho-\alpha) y^{\varrho-2\alpha} \,\varphi(y) \,, \quad \varrho = \frac{\alpha-1}{2} \end{split}$$

Thus, the new Schrödinger equation is

of the same form:

$$\begin{split} -\frac{d^2}{dy^2}\,\varphi(y) + \frac{\alpha^2-1}{4y^2}\,\varphi(y) + (iy)^{2\alpha-2}\alpha^2\left[-(iy)^{2\alpha}+\lambda\,W[(iy)^\alpha]\right.\\ \left. -E(\lambda)\right]\,\varphi(y) = 0\,. \end{split}$$
Example: Quasi-exact toboggans:

$$V_f(x) = x^6 + f_4 x^4 + f_2 x^2 + f_{-2} x^{-2},$$

$$V_g(y) = -(iy)^2 + i g_1 y + g_{-1} (iy)^{-1} + g_{-2} (iy)^{-2},$$

$$V_h(y) = -(iy)^{2/3} + h_{-2/3} (iy)^{-2/3} + h_{-4/3} (iy)^{-4/3} + h_{-2} (iy)^{-2}$$

mutually interrelated, with $\alpha = 1$ for V_f and $\alpha = 1/2$ for V_g or $\alpha = 1/3$ for V_h .

Summary: Perturbed harmonic oscillator

$$V(x) = x^2 + \sum_{\beta} g_{(\beta)} x^{\beta}$$
(1)

lives on topologically nontrivial trajectories $\mathcal{C}^{(N)}$. Its

$$\psi(x) \approx \psi^{(\pm)}(x) = e^{\pm x^2/2}, \qquad |x| \gg 1$$
 (2)

= multivalued analytic functions. A ray $x_{\theta} = \varrho e^{i\theta}$ chosen.

"physical" [i.e., asymptotically vanishing $\psi^{(phys)}(x)$] and

"unphysical" [i.e., asymptotically "exploding" $\psi^{(unphys)}(x)$],

$$\psi^{(-)}(x) = \begin{cases} \psi^{(phys)}(x), & k\pi + \theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right), \\ \psi^{(unphys)}(x), & k\pi + \theta \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \end{cases}, \quad k \in \mathbb{Z}$$

alternatively,

$$\psi^{(+)}(x) = \begin{cases} \psi^{(unphys)}(x), & k\pi + \theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right), \\ \psi^{(phys)}(x), & k\pi + \theta \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \end{cases}, \quad k \in \mathbb{Z}.$$

Riemann-surface values of the "tobogganic trajectories"

$$\mathcal{D}_{(\varepsilon,N)}^{(PTSQM,\,tobogganic)} = \left\{ x = \varepsilon \, \varrho(\varphi,N) \, e^{i \, \varphi} \mid \varphi \in (-(N+1)\pi,\,N\pi) \right\}$$

$$\varrho(\varphi, N) = \sqrt{1 + \tan^2 \frac{\varphi + \pi/2}{2N + 1}}$$

Bound states

$$H_{(\mathcal{PT})}\,\psi(x) = E\,\psi(x)$$

with Dirichlet inside the wedges,

$$\psi\left(\varrho \cdot e^{i\,\theta}\right) = 0, \qquad \varrho \gg 1 \qquad \theta + k_{i,f}\,\pi \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$$

defines bound states, often with real spectra.

For toboggans we selected $k_f = 0$ and $k_i = 1$ at N = 0,

 $k_f = -1$ and $k_i = 2$ at N = 1,

 $k_f = -2$ and $k_i = 3$ at N = 2 etc.

Scattering along the toboggans

•

independent solutions become equally large and oscillate not only for E > 0 when V(x) = 0 at $\rho \to \infty$ but also for any potential including our x^2 -dominated one.

"in" and "out" wedge boundaries are

 $\begin{aligned} \mathcal{A}_{(L)}^{(N)} &\to \varrho \, e^{i \, \theta_{in}}, \qquad \theta_{in} = -(N+3/4) \, \pi, \\ \mathcal{A}_{(L)}^{(N)} &\to \varrho \, e^{i \, \theta_{out}}, \qquad \theta_{out} = (N-1/4) \, \pi, \\ \mathcal{A}_{(U)}^{(N)} &\to \varrho \, e^{i \, \theta_{in}}, \qquad \theta_{in} = -(N+5/4) \, \pi, \\ \mathcal{A}_{(U)}^{(N)} &\to \varrho \, e^{i \, \theta_{out}}, \qquad \theta_{out} = (N+1/4) \, \pi. \end{aligned}$

We require the following incoming-beam normalization,

$$\psi\left(\varrho \cdot e^{i\,\theta_{in}}\right) = \psi_{(i)}(x) + B\,\psi_{(r)}(x), \qquad \varrho \gg 1, \qquad \theta_{in} = \text{fixed}$$

and outcoming-beam normalization,

$$\psi\left(\varrho \cdot e^{i\,\theta_{out}}\right) = (1+F)\,\psi_{(t)}(x), \qquad \varrho \gg 1, \quad \theta_{out} = \text{fixed}$$

with incident and reflected waves $\psi_{(i,r)}(x) \approx e^{\pm i\varrho^2/2}$.

B = "backward scattering" and F = "forward scattering"

Exactly solvable model of scattering on x^2

$$\left[-\frac{d^2}{dx^2} + \frac{\alpha^2 - 1/4}{x^2} + x^2 \right] \psi(x) = E \, \psi(x), \qquad \alpha = \ell + \frac{1}{2},$$

set $x^2 = -ir$ along the first nontrivial scattering path $\mathcal{A}_{(L)}^{(0)}$.

"in" branch with $r \ll -1$ and "out" branch with $r \gg +1$

$$\chi_{(\alpha)}(r) = r^{\frac{1}{4} + \frac{\alpha}{2}} e^{ir/2} {}_{1}F_{1}\left(\frac{\alpha + 1 - \mu}{2}, \alpha + 1; -ir\right), \qquad E = 2\mu$$

linearly independent partner $\chi_{(-\alpha)}(r) \ (\alpha \neq n \in \mathbb{N}).$

 $|r| \gg 1$ estimate,

$$r^{\frac{1}{4} + \frac{\alpha}{2}} \chi_{(\alpha)}(r) \approx e^{ir/2} \frac{r^{\mu/2} \exp\left[-i\pi (\alpha + 1)/4\right]}{\Gamma\left[(\alpha + 1 + \mu)/2\right]} + e^{-ir/2} \frac{r^{-\mu/2} \exp\left[+i\pi (\alpha + 1)/4\right]}{\Gamma\left[(\alpha + 1 - \mu)/2\right]}.$$

"rigid" at $\alpha > 0$, $\mu = E/2 > 0$ and $|x| = |\sqrt{(r)}| \gg 1$

$$\psi_{in,out}(x) \approx r^{-1/4 + (\alpha + \mu)/2} e^{ir/2} \frac{\exp\left[-i\pi (-\alpha + 1)/4\right]}{\Gamma\left[(-\alpha + 1 + \mu)/2\right]} + \dots$$

Note that $\psi_{out}^{(Coul)}(r)$ becomes "distorted" by power-law as well,

 $\sin(\kappa r + const) \rightarrow \sin(\kappa r + const \cdot \log r + const) \,.$

Toboggans in potentials with more spikes

two branch points (say, in $x = \pm 1$)

$$V(x) = x^{2} + \frac{G}{(x-1)^{2}} + \frac{G^{*}}{(x+1)^{2}}$$

Sub-summary of the tobogganic study

Quantum particle is assumed moving along \mathcal{PT} -symmetric "toboggan" paths which N-times encircle the branch point in the origin. Both bound states and scattering.

MODELS ON AN INTERVAL

FIRST STEP: K COUPLED SQUARE WELLS

RECOLLECT our main idea: work with ${\bf non-metric},$

$$\mathbf{P}
eq \mathbf{P}^\dagger$$

pattern: if $H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1}$ and $\mathbf{R} \neq \mathbf{R}^{\dagger}$,

we have the symmetry,

$$H S = S H, \qquad S = [\mathbf{R}^{-1}]^{\dagger} \mathbf{R}.$$

Let's choose
$$\mathbf{R}^{-1} = \mathbf{R}^{\dagger}$$
 with $\mathcal{S} = \mathbf{R}^{2}$ and

$$\begin{pmatrix} 0 & \dots & 0 & \mathcal{P} \\ \mathcal{P} & 0 & \dots & 0 & 0 \\ 0 & \mathcal{P} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \mathcal{P} & 0 \end{pmatrix}$$

at any K.

Toy model with two coupled channels

•

(a) Hamiltonian:

$$H_{(kinetic)} = \begin{pmatrix} -\frac{d^2}{dx^2} & 0\\ 0 & -\frac{d^2}{dx^2} \end{pmatrix},$$
$$H_{(interaction)} = \begin{pmatrix} V_a(x) & W_b(x)\\ W_a(x) & V_b(x) \end{pmatrix}.$$

(b) its θ -pseudo-Hermiticity:

$$\theta = \theta^{\dagger} = \begin{pmatrix} 0 & \mathcal{P} \\ & \\ \mathcal{P} & 0 \end{pmatrix} = \theta^{-1}$$

(c) potentials $[x \in (-1, 0)]$:

$$\operatorname{Im} W_a(x) = X > 0,$$
$$\operatorname{Im} W_b(x) = Y > 0,$$
$$\operatorname{Im} V_a(x) = \operatorname{Im} V_b(x) = Z,$$

(d) spin-like ($\sigma = \pm 1$) symmetry:

$$\Omega = \begin{pmatrix} 0 & \omega^{-1} \\ & & \\ \omega & 0 \end{pmatrix}, \qquad \omega = \sqrt{\frac{X}{Y}} > 0.$$

(e) solvable and physical

(f) simple in a modified Dirac's notation

$$H|E,\sigma\rangle = E|E,\sigma\rangle, \quad \Omega |E,\sigma\rangle = \sigma |E,\sigma\rangle$$
$$\langle\!\langle E,\sigma|H = E\langle\!\langle E,\sigma|, \quad \langle\!\langle E,\sigma|\Omega = \sigma\langle\!\langle E,\sigma|$$

biog.:
$$0 = \langle\!\langle E', \sigma' | E, \sigma \rangle \times \begin{cases} (E' - E) \\ (\sigma' - \sigma) \end{cases}$$

cpl. :
$$I = \sum_{E,\sigma} |E,\sigma\rangle \frac{1}{\langle\!\langle E,\sigma | E,\sigma \rangle} \langle\!\langle E,\sigma | E,\sigma \rangle$$

sp.:
$$H = \sum_{E,\sigma} |E,\sigma\rangle \frac{E}{\langle\!\langle E,\sigma | E,\sigma \rangle\!\rangle} \langle\!\langle E,\sigma |$$

$$\Omega = \sum_{E,\sigma} |E,\sigma\rangle \frac{\partial}{\langle\!\langle E,\sigma | E,\sigma \rangle} \langle\!\langle E,\sigma |$$

FULL MODEL WITH K COUPLED SQUARE WELLS

•

 $V(x) = V_{(Z)}(x) = -i Z \operatorname{sign}(x), \qquad x \in (-1, 1)$

STILL HAS ITS MERITS!

(a) = ODE with constant coefficients:

$$-\frac{d^2}{dx^2}\varphi^{(m)}(x) + \sum_{j=1}^K V_{Z_{(m,j)}}(x)\varphi^{(j)}(x) =$$
$$= E\varphi^{(m)}(x), \qquad m = 1, 2, \dots, K$$

(b) = solvable by an ansatz for $\varphi^{(m)}(x)$

$$= \begin{cases} C_L^{(m)} \sin \kappa_L(x+1), & x < 0, \\ \\ C_R^{(m)} \sin \kappa_R(-x+1), & x > 0 \end{cases}$$

(c) = giving $Z_{(eff)}^{(m)}(K)$ as eigenvalues of

$$\left(\begin{array}{ccccc} Z_{(1,1)} & Z_{(1,2)} & \dots & Z_{(1,K)} \\ \\ Z_{(2,1)} & Z_{(2,2)} & \dots & Z_{(2,K)} \\ \\ \vdots & \ddots & \ddots & \vdots \\ \\ Z_{(K,1)} & Z_{(K,2)} & \dots & Z_{(K,K)} \end{array}\right).$$

(d) quantized easily:

$$= \text{ansatz} \rightarrow \kappa_R = s + \mathrm{i}t = \kappa_L^*, \quad s > 0,$$

$$\rightarrow t = t_{first\ curve}(s) = Z^{(m)}_{(eff)}(K)/(2s)$$

plus **matching** in the origin: PTO

 $\rightarrow \kappa_L \operatorname{cotan} \kappa_L = -\kappa_R \operatorname{cotan} \kappa_R$

gives the second, "universal" curve

 $t = t_{exact}(s)$ with implicit definition

 $2s\,\sin 2s + 2t\,\sinh 2t = 0$

 \rightarrow energies via intersections at any K,

$$E_n = s_n^2 - t_n^2, \quad n = 0, 1, \dots$$

Technicalities

•

(a) take generalized parities $\mathbf{R} = \mathbf{R}_{(K,L)} = \mathcal{P} \mathbf{r}_{(K,L)}$,

$$\mathbf{r}_{(K,L+1)} = \mathbf{r}_{(K,1)} \, \mathbf{r}_{(K,L)} \,, \quad L = 1, 2, \dots \,.$$

$$\left[\mathbf{r}_{(K,L)}\right]^{K} = I, \ \mathbf{r}_{(K,K-L)} = \left[\mathbf{r}_{(K,L)}\right]^{\dagger}.$$

(b) adapt H to \mathbf{R} :

$$\mathbf{A} = \mathbf{r}_{(K,K-L)} \cdot \mathbf{A}^T \cdot \mathbf{r}_{(K,L)}$$

Let us pick up

•

THREE channels
$$\mathbf{R}_{(3,1)} = \begin{pmatrix} 0 & 0 & \mathcal{P} \\ \mathcal{P} & 0 & 0 \\ 0 & \mathcal{P} & 0 \end{pmatrix} = \mathbf{R}_{(3,2)}^{\dagger} = \mathbf{R}_{(3,2)}^{-1},$$
$$\mathbf{R}_{(3,2)} = \begin{pmatrix} 0 & \mathcal{P} & 0 \\ 0 & 0 & \mathcal{P} \\ \mathcal{P} & 0 & 0 \end{pmatrix} = \mathbf{R}_{(3,1)}^{\dagger} = \mathbf{R}_{(3,1)}^{-1}.$$

giving the **unique**

$$\mathbf{A}_{(interaction)} = \begin{pmatrix} Z & X & X \\ X & Z & X \\ X & X & Z \end{pmatrix}, \quad L = 1, 2$$

the 'first curve' $t = t^{(\sigma)}(s) = \frac{1}{2s} Z_{eff}(\sigma), \sigma = 1, 2, 3$

$$Z_{eff}(1) = Z + 2X, \qquad Z_{eff}(2,3) = Z - X$$
$$\left(C_{(1)}^{(a)}, C_{(1)}^{(b)}, C_{(1)}^{(c)}\right) \sim (1, 1, 1)$$
$$\left(C_{(2)}^{(a)}, C_{(2)}^{(b)}, C_{(2)}^{(c)}\right) \sim (1, -1, 0)$$
$$\left(C_{(3)}^{(a)}, C_{(3)}^{(b)}, C_{(3)}^{(c)}\right) \sim (1, 1, -2).$$

Energies real: $Y - Z_{crit} \leq Z \leq Z_{crit} - 2Y$.

[vertices $(0, \pm 4.475)$ and (2.98, -1.49)].

Numerical interlude

•

(a) weakly non-Hermitian regime:

$$s = s_n = \frac{(n+1)\pi}{2} + \tau \frac{Q_n}{2}, \quad \tau = (-1)^n$$

 \rightarrow solvable by **iterations**:

the first small quantity $\rho \equiv \frac{1}{L} = \frac{1}{(n+1)\pi}$

the second one $\alpha = \frac{2 Z_{eff}(\sigma)}{L}$ or $\beta = \alpha \varrho$

 \rightarrow a "generalized continued fraction"

$$Q = \arcsin\left(2t \,\frac{\varrho}{1 + \tau \,Q \,\varrho} \,\sinh 2t\right), \quad 2t = \frac{\alpha}{1 + \tau \,Q \,\varrho}.$$

(b) intermediate non-Hermiticities: ad hoc:

$$\rightarrow \arcsin(x) = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots$$
$$Q = Q(\alpha, \beta) = \alpha\beta \Omega(\alpha, \beta),$$
$$\rightarrow \Omega(\alpha, \beta) = 1 + c_{10}\alpha^2 + c_{01}\beta^2 + c_{20}\alpha^4 + c_{11}\alpha^2\beta^2 + c_{02}\beta^4 + \mathcal{O}(\alpha^6)$$

 \rightarrow equation **re-arranged**:

$$[1 + \tau \beta^2 \Omega(\alpha, \beta)] \operatorname{arcsinh}(\Lambda) = \alpha$$

 $\Lambda = [1 + \tau \, \beta^2 \Omega(\alpha, \beta)]^2 \, \tfrac{1}{\beta} \, \sin[\alpha\beta \, \Omega(\alpha, \beta)]$

(c) formulae:

 \rightarrow leading order relation

$$0 = \left(-\frac{1}{6} + c_{10} + c_{01}\varrho^2 + 3\tau \varrho^2\right)\alpha^3 + \dots$$

determines the first two coefficients,

$$c_{10} = \frac{1}{6}, \qquad c_{01} = -3\tau$$

the next-order $O(\alpha^5)$ gives

$$c_{20} = \frac{1}{120}, \qquad c_{11} = \frac{1-8\tau}{6}, \qquad c_{02} = 15$$

and the $1 + O(\alpha^4)$ formula

$$Q_n = \frac{4 Z_{eff}^2}{(n+1)^3 \pi^3} + \frac{8 Z_{eff}^4}{3 (n+1)^5 \pi^5} \left(1 + \frac{18 (-1)^{n+1}}{(n+1)^2 \pi^2} \right).$$

FOUR channels

•

K = 4 warning: $\mathbf{R}_{(4,2)}$ is Hermitian,

mere six constraints upon 16 couplings.

Not enough symmetry for us.

Unique coupling-matrix left,

$$\mathbf{A}_{(interaction)} = \begin{pmatrix} Z & U & D & U \\ L & Z & L & D \\ & & & \\ D & U & Z & U \\ L & D & L & Z \end{pmatrix}, \quad L = 1, 3.$$

solution :

Four shifts of the effective Z,

$$[-D, -D, D + 2\sqrt{UL}, D - 2\sqrt{UL}]$$

with respective eigenvectors

$$\left\{ 1, 0, -1, 0 \right\}, \left\{ 0, 1, 0, -1 \right\}, \\ \left\{ U, \pm \sqrt{UL}, U, \pm \sqrt{UL} \right\}.$$

remark:

from the pseudo-parity

$$\mathbf{r}^{(permuted)} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

repartitioned model

$$\mathbf{A}_{(interaction)}^{(permuted)} = \begin{pmatrix} Z & D & U & U \\ D & Z & U & U \\ \hline L & L & Z & D \\ L & L & D & Z \end{pmatrix}, \quad L = 1, 3.$$

FIVE channels

•

$$\mathbf{r}_{(5,1)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad \dots,$$

all lead to the same

$$\mathbf{A}_{(interaction)} = \begin{pmatrix} Z & X & D & D & X \\ X & Z & X & D & D \\ D & X & Z & X & D \\ D & D & X & Z & X \\ X & D & D & X & Z \end{pmatrix}.$$

 \rightarrow exceptional eigenvalue $F_0=2\,D+2\,X$ giving eigenvector $\{1,1,1,1,1\}$

 \rightarrow the reduced Z = 0 matrix A has the pair of the twice degenerate eigenvalues with 2 respective eigenvectors

$$F_{\pm} = \frac{1}{2} \left[-D - X \pm \sqrt{5} \left(-D + X \right) \right]$$
$$\left\{ 1 \mp \sqrt{5}, -1 \pm \sqrt{5}, 2, 0, -2 \right\}$$

$$\left\{1 \mp \sqrt{5}, -2, 0, 2, -1 \pm \sqrt{5}\right\}.$$

റ	0
У	<u>۲</u>
0	\sim

When do the energies remain real?

•

(a) a numerical algorithm:

$$\frac{Q}{2}\Big|_{crit} \equiv \varepsilon(t_{crit}) = \pi - \frac{Z_{crit}}{2t_{crit}},$$
$$\sin\left[2\,\varepsilon(t)\right] = \frac{t\,\sinh\,2t}{\pi - \varepsilon(t)},$$

 $\varepsilon_{(lower)}(t) = \pi/4$ and $\varepsilon_{(upper)}(t) = 0$.

$$\partial_t \varepsilon(t_{crit}) = \frac{Z_{crit}}{2t_{crit}^2},$$
$$\partial_t \varepsilon(t) = \frac{\sinh 2t + 2t \cosh 2t}{2 \left[\pi - \varepsilon(t)\right] \cos 2\varepsilon(t) - \sin 2\varepsilon(t)}$$

a sample result:

- $\rightarrow t_{crit} \in (0.839393459, 0.839393461),$
- $\rightarrow s_{crit} \in (2.665799044, 2.665799069),$
- $\rightarrow E_{crit} \in (6.401903165, 6.401903294).$

iteration	$Z_{crit}^{(lower)}$	$Z_{crit}^{(upper)}$		
0	4.299	4.663		
2	4.4614	4.4857		
4	4.47431	4.47601		
6	4.475239	4.475357		
8	4.47530381	4.4753119		
10	4.475308262	4.475308823		
12	4.475308560	4.475308614		

Table 1:

SIX channels

•

$$L = 3$$

21 free parameters

Hermitian ${\bf R}$ and a weak symmetry,

skipped

$$L = 1 \text{ or } L = 5;$$

$$\mathbf{r}_{(6,1)}^{(permuted)} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

 $\mathbf{A} = asymmetric:$

$$\mathbf{A}_{(interaction)}^{(permuted)} = \begin{pmatrix} Z & Y & G & B & F & B \\ X & Z & C & F & C & G \\ F & B & Z & Y & G & B \\ C & G & X & Z & C & F \\ \hline G & B & F & B & Z & Y \\ C & F & C & G & X & Z \end{pmatrix}.$$

eigenvalues = roots of quadratic equations

two = non-degenerate, two = doubly degenerate

2 or
$$L = 4$$
:

$$\mathbf{r}_{(6,2)}^{(permuted)} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix},$$

L =

$\mathbf{A} = \text{symmetric:}$

$\mathbf{A}_{(interaction)}^{(permuted)} =$		X	X	C	D	G	
	X	Z	X	G	C	D	
	X	X	Z	D	G	C	
	C	G	D	A	В	В	
	D	C	G	В	A	В	
	G	D	C	B	В	A	

eigenvalues = roots of quadratic equations

two = non-degenerate, two = doubly degenerate

2M-1 channels with M=4 etc

•

M = 4: Cardano formulae, four parameters at all L:

$$\mathbf{A}_{(interaction)} = \begin{pmatrix} Z & X & Y & D & D & Y & X \\ X & Z & X & Y & D & D & Y \\ Y & X & Z & X & Y & D & D \\ D & Y & X & Z & X & Y & D \\ D & D & Y & X & Z & X & Y \\ Y & D & D & Y & X & Z & X \\ X & Y & D & D & Y & X & Z \end{pmatrix}.$$
2M channels with M = 4 etc

•

37 free parameters for (2M, L) = (8, 4) (29 in pairs),

16 free parameters for (2M, L) = (8, 2) (all in quadruplets),

8 free parameters for (2M, L) = (8, 1) etc, (all in octuplets).

Summarizing asymmetrically coupled square wells

- (1) Recipe $\mathcal{P} \to \mathcal{R}$ allowing **finite rotations** = feasible.
- (2) Models carrying **new type of symmetries**.
- (3) New "quantum practice", quasi-Hermitian.

SECOND STEP: SQUARE WELLS

DISCRETIZED,

so that the REALITY OF SPECTRA

can be proved MORE easily,

by the standard MATRIX TECHNIQUES

Runge-Kutta recipe

$$x_0 = -1,$$
 $x_k = x_{k-1} + h = -1 + kh,$
 $h = \frac{2}{N},$ $k = 1, 2, \dots, N$

$$-\psi''(x) \approx -\frac{\psi(x_{k+1}) - 2\,\psi(x_k) + \psi(x_{k-1})}{h^2})$$

$$\psi(x_0) = \psi(x_N) = 0$$

Sample potentials

$$V(x) = [V(-x)]^*, \qquad \psi(\pm 1) = 0.$$
$$V(x) = \begin{cases} +i Z_n \ x \in (-\ell_n, -\ell_{n-1}), \\ -i Z_n \ x \in (\ell_{n-1}, \ell_n), \end{cases},$$
$$n = 1, 2, \dots, q+1,$$

 $\ell_0 = 0 < \ell_1 < \ldots < \ell_{q+1} = 1.$

|--|

Equations: original

$$\left[-\frac{d^2}{dx^2} + V(x)\right]\,\psi(x) = E\,\psi(x).$$

and discretized

$$-\frac{\psi(x_{k+1}) - 2\,\psi(x_k) + \psi(x_{k-1})}{h^2}$$

$$= \operatorname{i}\operatorname{sign}(x_k) Z \,\psi(x_k) + E \,\psi(x_k) \,.$$

The Weigert's N = 4 matrix model

•

•

$$\begin{pmatrix} 2 + \frac{1}{4} i Z & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 - \frac{1}{4} i Z \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \gamma \\ \beta_0 \end{pmatrix} = \frac{1}{4} E \begin{pmatrix} \alpha_0 \\ \gamma \\ \beta_0 \end{pmatrix}$$

$easily\ generalized, ({\rm PTO})$

$i\xi - F$	-1					
-1	$i\xi - F$	·				
	··.	۰.	-1			
		-1	$i\xi - F$	-1		
			-1	-F	-1	
				-1	$-i\xi - F$	۰.
					-1	·
						·)

Solutions

$$F = E h^{2} - 2 \text{ and } \xi = Z h^{2}$$

$$\alpha_{k} = a_{k} + i b_{k}, \qquad \beta_{k} = a_{k} - i b_{k} \equiv \alpha_{k}^{*},$$

$$\alpha_{k} = (a + ib) U_{k} \left(\frac{-F + i\xi}{2}\right), \qquad k = 0, 1, \dots, n$$

$$U_{k}(\cos \theta) = \frac{\sin(k+1)\theta}{\sin \theta}.$$

Conditions

$$\gamma = (a + ib) U_{n+1} \left(\frac{-F + i\xi}{2}\right)$$
$$= (a - ib) U_{n+1} \left(\frac{-F - i\xi}{2}\right)$$

$$F \gamma = -(a + ib) U_n \left(\frac{-F + i\xi}{2}\right) - (a - ib) U_n \left(\frac{-F - i\xi}{2}\right).$$

Robust solution at F = 0.

Parameter a must vanish for even n = 0, 2, 4, ... (and we may normalize b = 1) while b = 0 and a = 1 for the odd n = 1, 3, 5, ...

Secular equation in two alternative forms,

$$U_n\left(\frac{1}{2}\,\mathrm{i}\,\xi\right) - U_n\left(\frac{1}{2}\,\mathrm{i}\,\xi\right) = 0, \qquad n = 2m,$$
$$U_n\left(\frac{1}{2}\,\mathrm{i}\,\xi\right) + U_n\left(-\frac{1}{2}\,\mathrm{i}\,\xi\right) = 0, \qquad n = 2m + 1$$

satisfied identically at any $m = 0, 1, \ldots$. QED.

$$E = E_{n+2} = 2/h^2 = N^2/2 = 2(n+2)^2$$

Generic solutions at $F \neq 0$.

$$U_{n+1}\left(\frac{-F+\mathrm{i}\xi}{2}\right)\,(a+\mathrm{i}b) = U_{n+1}\left(\frac{-F-\mathrm{i}\xi}{2}\right)\,(a-\mathrm{i}b)$$

$$T_{n+1}\left(\frac{-F+\mathrm{i}\xi}{2}\right)(a+\mathrm{i}b) = -T_{n+1}\left(\frac{-F-\mathrm{i}\xi}{2}\right)(a-\mathrm{i}b)$$

define $(a, b) = (a_0, b_0)$ and their ratio,

$$T_{n+1}\left(\frac{-F + i\xi}{2}\right) U_{n+1}\left(\frac{-F - i\xi}{2}\right) + T_{n+1}\left(\frac{-F - i\xi}{2}\right) U_{n+1}\left(\frac{-F + i\xi}{2}\right) = 0.$$

 \implies the energies F as functions of the couplings ξ .

Re-parametrization

$$\frac{-F + i\xi}{2} = \cos\varphi, \qquad \text{Re}\,\varphi = \alpha, \qquad \text{Im}\,\varphi = \beta$$

i.e.,

$$\frac{1}{2}F = -\cos\alpha\cosh\beta, \qquad \frac{1}{2}\xi = -\sin\alpha\sinh\beta$$

and, in the opposite direction,

$$\cos\alpha = -\frac{1}{2\cosh\beta}\,F,$$

$$\sinh\beta = \frac{1}{2\sqrt{2}}\sqrt{F^2 + \xi^2 - 4} + \sqrt{(F^2 + \xi^2 - 4)^2 + 16\xi^2}.$$

gives trigonometric secular equation

$$\operatorname{Re}\frac{\sin[(n+1)\varphi]\cos[(n+1)\varphi^*]}{\sin\varphi} = 0.$$

Inspection.

In the domain with negative $\beta < 0$, roots

 $\alpha \in (0,\pi/2)$ at the negative F < 0, and

 $\alpha \in (\pi/2,\pi)$ at the positive F > 0.

The first roots in closed form,

$$F_0 = 0, \quad F_{\pm} = \pm \sqrt{2 - \xi^2}, \qquad n = 0,$$

 $F_0 = 0, \quad F_{\pm,\pm} = \pm \sqrt{2 - \xi^2 \pm \sqrt{1 - 4\xi^2}}, \qquad n = 1$

etc. Critical values $Z = Z_{(crit)}(N)$ (PTO).

ALTERNATIVE OPTION: Even dimensions N - 1 = 2n + 2: $\begin{pmatrix} i\xi - F & -1 \\ -1 & i\xi - F & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & i\xi - F & -1 \\ \hline & & & -1 & i\xi - F & \ddots \\ & & \ddots & \ddots & -1 \\ & & & & -1 & -i\xi - F \\ \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \\ \vdots \\ \alpha_n^* \\ \vdots \\ \alpha_0^* \end{pmatrix} = 0.$

PARALLELISM.

Whenever the \mathcal{PT} -symmetry remains unbroken, closed solution follows from the matching conditions

$$(a+\mathrm{i}b) \ U_{n+1}\left(\frac{-F+\mathrm{i}\xi}{2}\right) = (a-\mathrm{i}b) \ U_n\left(\frac{-F-\mathrm{i}\xi}{2}\right) \,.$$

and

$$U_n\left(\frac{-F+\mathrm{i}\xi}{2}\right) U_n\left(\frac{-F-\mathrm{i}\xi}{2}\right) = U_{n+1}\left(\frac{-F+\mathrm{i}\xi}{2}\right) U_{n+1}\left(\frac{-F-\mathrm{i}\xi}{2}\right) \,.$$

Proof.

subproblem

$$\begin{pmatrix} -1 & i\xi - F & -1 & 0 \\ 0 & -1 & -i\xi - F & -1 \end{pmatrix} \begin{bmatrix} U_{n-1}\left(\frac{-F+i\xi}{2}\right)(a+ib) \\ U_n\left(\frac{-F+i\xi}{2}\right)(a+ib) \\ U_n\left(\frac{-F-i\xi}{2}\right)(a-ib) \\ U_{n-1}\left(\frac{-F-i\xi}{2}\right)(a-ib) \end{bmatrix} = 0$$

induces just one matching, $\alpha_{n+1} = \alpha_n^*$. QED.

MODELS WITH MORE MATCHING POINTS

 $\ell = 1/2$ and N = 6 – analytic tractability

$$V(x) = \begin{cases} +i Z & \\ 0 & \text{for } x \in \begin{cases} \left(-1, -\frac{1}{2}\right), \\ \left(-\frac{1}{2}, \frac{1}{2}\right), \\ \left(\frac{1}{2}, 1\right) \end{cases}$$

$i\xi - F$	-1				$\begin{pmatrix} \alpha_0 \end{pmatrix}$	
-1	-F	-1			γ_0	
	-1	-F	-1		γ	= 0.
		-1	-F	-1	γ_0^*	
\			-1	$-\mathrm{i}\xi - F$	$\left(\begin{array}{c} \alpha_{0}^{*} \end{array} \right)$	

$$V(x) = \begin{cases} +i Z & \\ 0 & \text{for } x \in \begin{cases} \left(-1, -\frac{5}{8}\right), \\ \left(-\frac{5}{8}, \frac{5}{8}\right), \\ \left(\frac{5}{8}, 1\right) \end{cases}$$

$$\begin{pmatrix} \frac{\mathrm{i}\xi - F & -1 & & & \\ -1 & -F & -1 & & & \\ & -1 & -F & -1 & & \\ & & -1 & -F & -1 & & \\ & & & -1 & -F & -1 & \\ & & & & -1 & -F & -1 \\ \hline & & & & & -1 & -F & -1 \\ \hline & & & & & -1 & -\mathrm{i}\xi - F \\ \end{pmatrix} \begin{bmatrix} \alpha_0 \\ \gamma_1 \\ \gamma_0 \\ \gamma_1 \\ \gamma_0 \\ \gamma_1 \\ \gamma_1^* \\ \alpha_0^* \\ \gamma_1^* \\ \alpha_0^* \\ \end{pmatrix} = 0.$$

secular determinant

$$\mathcal{D} = \left[-F^6 - F^4\left(\xi^2 - 6\right) + F^2\left(4\,\xi^2 - 10\right) - 3\,\xi^2 + 4\right]F.$$
 (3)

Roots remain real in the Hermitian $\xi \to 0$ limit (see Figure)

$$F_0 = 0, \qquad F_{\pm,0} = \pm\sqrt{2}, \qquad F_{\pm,\pm} = \pm\sqrt{2\pm\sqrt{2}}, \qquad \xi \to 0.$$

 $\xi_{crit} \approx 1.15470.$

five of the roots remain real for $Z \gg 1$,

$$F_0 = 0, \qquad F_{\pm,0} = \pm 1, \qquad F_{\pm,+} = \pm \sqrt{3}, \qquad \xi \to \infty.$$

$\int i\xi - F$	-1		$\left(\begin{array}{c} \alpha_0 \end{array} \right)$	
1	$i\xi - F - 1$		α_1	
	-1 $-F$ -1		γ_0	
	-1 -F -1		γ	= 0
	-1 $-F$ -1		γ_0^*	
	-1 $-i\xi - F$	-1	α_1^*	
	-1 -	$i\xi - F$	$\left(\begin{array}{c} \alpha_0^* \end{array} \right)$	

$$\mathcal{D} = \left[-F^6 - F^4 \left(2\xi^2 - 6\right) + F^2 \left(-\xi^4 + 4\xi^2 - 10\right) + 2\xi^4 + \xi^2 + 4\right]F$$
(4)

PENTADIAGONAL REAL REFORMULATION

$\begin{pmatrix} -F & -\xi \end{pmatrix}$	-1	0							$\left(\begin{array}{c}a_{0}\end{array}\right)$	
$\xi -F$	0	-1							b_0	
-1 0	-F	$-\xi$	•••						a_1	
0 -1	ξ	-F		·					b_1	
	••.		•••	••.	-1	0			:	= 0.
		·	•••	·	0	-1			•	
			-1	0	-F	-ξ	-1		a_n	
			0	-1	Ę	-F	0		b_n	
					-2	0	-F		γ	
(0)	$\langle \gamma \rangle$	

$$\vec{\mathbf{c}}_{\mathbf{k}} = U_k \left(\frac{1}{2}\mathbf{X}\right) \vec{\mathbf{c}}_{\mathbf{0}}, \qquad \mathbf{X} = \begin{pmatrix} -F & -\xi \\ & \\ \xi & -F \end{pmatrix}, \qquad \mathbf{k} = 0, 1, \dots, n+1.$$

SUMMARY: NEW HORIZONS:

- A. possible new physics
- B. new feasible calculations

Moreover:

ALSO FEASIBILITY:

• (a) of proofs (reality of energies)

- (i) square-well V(x) used (friendly math)

- (ii) Runge-Kutta x used (friendly phys)

AND FEASIBILITY:

$\bullet~(\mathrm{b})$ of model building

- (i) "realistic" shapes of V(x) (phys made useful)

- (ii) "realistic" shapes of paths x (math made flexible)

CONCERNING ANALYTIC CONTINUATION:

\bullet (a) new mathematics of rigorous proofs

- (i) changing variables in SE (math kept friendly)

- (ii) rectified x (SFQM phys made friendly)

CONCERNING ANALYTIC CONTINUATION:

• (b) in model building using tobogganic paths $\mathcal{C}^{(N)}$

- (i) bound states (topology-dependent phys)

- (ii) tobogganic scattering (math made challenging again)

last page: on non-Hermiticity, REMEMBER:

• A. in physics:

I. unobservable coordinates (cf. KG),

II. nonstandard scattering

• B. in functional analysis:

I. analytic continuation,

II. matching methods