PHYSICS NEAR EXCEPTIONAL POINTS

(or: towards systematics of quantum catastrophes)

Miloslav Znojil

Ústav jaderné fyziky AV ČR, 250 68 Řež, Czechia

PHHQP VI, City University, 18 July 2007

Chapter I. INTRODUCTION

.

EXCEPTIONAL POINTS?

definition 1 (the most elementary one):

The points of the loss of the reality

of the least stable pair

of the bound-state energies of ${\cal H}$

\heartsuit CHARACTERISTIC ODE MODEL:

se
e $E=k^2$ in M. Znojil, $\ensuremath{\,PT\mathchar`-symmetric square well,}$ Phys. Lett. A 285 (2001) 7-10:

Figure 1: The least stable square-well energies are the lowest ones

♦ AN EVEN MORE ELEMENTARY SCHEMATIC MATRIX MODEL:

$$\begin{pmatrix} -1 & b \\ & \\ -b & 1 \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = E \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$

$$E = E_{\pm} = \sqrt{1 - b^2},$$

 $\Omega = \mathcal{D}^{(1)} = (-1, 1).$

EXCEPTIONAL POINTS?

definition 2 ("in physics"):

certain points where "something is happening" or, often, where "something goes wrong";

a typical "physical" EP: the $\alpha = 0$ trigger

of the "fall on the center" in $V(r) \sim \frac{\alpha^2 - 1/4}{r^2}$

♠ A SAMPLE OF EPs IN REAL LIFE

catastrophes in strong fields (Dirac equation: Greiner '68), complex EPs in perturbation theory (BW '69: $\sqrt{\ldots}$ for AHOs), in magnetohydrodynamics (Günther et al, this conference), in nuclear physics: Scholtz et al, Heiss et al, Rotter et al, in supersymmetric models: many authors, in relativistic models: AM '04 etc

etc.

\heartsuit MODELS WITH EPs LOOK INNOVATIVE

physics can be **unusual** (non-local, superluminal, dissipative, \dots)

one could **circumvent** no-go theorems (e.g., in supersymmetry)

relativistic (e.g., Proca) equations appear in a new perspective

MHD models = "physical" inside **as well as** outside Ω

last but, better, first, field theory

math. guide: EP in HO at $\alpha \to 0$ and all n: $E_n^+ = 4n + 2 + 2\alpha$ merges with $E_n^- = 4n + 2 - 2\alpha$,

Figure 2: Spectrum of the PT-symmetric harmonic oscillator

& Unfortunately, HO is **NOT GENERIC:**

all the energies = **suddenly** complex **iff** $\alpha < 0$ (degeneracy)

"isolated" degenerate EPs \exists **periodically** in α

all the energies = **linear** in α

LHO obtained at $\alpha = \frac{1}{2}$ (equidistance, SUSY etc)

M. Znojil, *PT-symmetric harmonic oscillators*, Phys. Lett. A 259 (1999) 220 - 223).

EXCEPTIONAL POINTS?

definition 3 (à la T. Kato):

They form a boundary $\partial \Omega$ of the domain $\Omega = \Omega(H)$ of the quasi-Hermiticity of $H \neq H^{\dagger}$

an immediate task: the determination of $\partial \Omega$

\implies CHALLENGE TO PHYSICS

EPs are rather rare in Hermitian worlds with $H = H^{\dagger}$ (Heiss et al)

EP means a singularity in the metric Θ in quasi-Hermitian world

an immediate task: the determination of $\partial \Omega$

\implies CHALLENGE TO MATHEMATICS

hard life beyond general four-by-four matrices $H^{[N]}$

M. Znojil, Determination of the domain of the admissible matrix elements in the four-dimensional PT-symmetric anharmonic model,

Phys. Lett. A, in print, online, quant-ph/0703168 (PTO).

Figure 3: Graphical determination of the three-parametric domain $\Omega^{(4)} = \Omega^{(4)}(a, b, c)$ at a fixed $c = \sqrt{8/5}$, with the four "double" EPs x_1, x_2, x_3, x_4 .

AN AMBITION OF THIS TALK

SIMPLIFY SOME CURRENT HAMILTONIANS $H \neq H^{\dagger}$ [say, $H = -\triangle + V(\vec{x})$, via a discretization, chapter II]

REVIEW BRIEFLY **THE GAINS**

(results on **matrices** $H = H^{\ddagger} = \Theta^{-1} H^{\dagger} \Theta$ inside Ω , ch. III,IV)

while trying to

formulate some generic conjectures on $\partial \Omega$ (method: symbolic manipulations plus extrapolations)

Chapter II. DISCRETIZATIONS

.

A MENU

(1) RUNGE KUTTA QM [any discrete one-dimensional $H = p^2 + V(x) \neq H^{\dagger}$]

(2) THE OTHER LATTICES OF COORDINATES[2D here, semi-discrete, coupled channels, square wells]

(3) BIORTHOGONAL **BASES** [mainly variational, **separably anharmonic oscillators**]

(1) RUNGE KUTTA QM IN 1D

coordinates: $x_k = x_{k-1} + h = -1 + kh$,

$$h = \frac{2}{N}, \qquad x_0 = -1, \qquad k = 1, 2, \dots, N$$

kinetic energy:

$$-\psi''(x) \approx -\frac{\psi(x_{k+1}) - 2\,\psi(x_k) + \psi(x_{k-1})}{h^2}$$

boundary conditions: $\psi(x_0) = \psi(x_N) = 0$

leads to the Weigert's matrix square well model

•

$$\begin{pmatrix} 2 + \frac{1}{4} \operatorname{i} Z & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 - \frac{1}{4} \operatorname{i} Z \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \gamma \\ \beta_0 \end{pmatrix} = \frac{1}{4} E \begin{pmatrix} \alpha_0 \\ \gamma \\ \beta_0 \end{pmatrix}$$

& its
$$N > 4$$
 generalizations with tridiagonal H ,
(PTO)

$i\xi - F$	-1)
-1	$i\xi - F$	·				
	·	۰.	-1			
		-1	$i\xi - F$	-1		
			-1	-F	-1	
				-1	$-i\xi - F$	·
					-1	·
						·

\exists AN EQUIVALENT REAL FORMULATION OF SE:

$\left(-F \right)$	$-\xi$	-1	0						$\left(\begin{array}{c}a_{0}\end{array}\right)$	
ξ -	-F	0	-1						b_0	
-1	0	-F	$-\xi$	••.					a_1	
0 -	-1	ξ	-F		••.				b_1	
		·		•••	·	-1	0		•	= 0.
			•••	•••	·	0	-1		• •	
				-1	0	-F	$-\xi$	-1	a_n	
				0	-1	ξ	-F	0	b_n	
						-2	0	-F	$\left(\begin{array}{c}\gamma\end{array}\right)$	

SOLVABLE:

 \implies by the matching method

 \implies in closed **complex** form (Tschebyshev polynomials)

 \implies in closed **real** form (matrix Tschebyshev)

M. Znojil (quant-ph/0605209),
Matching method and exact solvability of discrete
PT-symmetric square wells
J. Phys. A: Math. Gen. 39 (2006) 10247 - 10261

MERIT: A PARALLELISM

(i) solvable **differential** Schrödinger equation:

B. Bagchi et al (quant-ph/0503035),
PT-symmetric supersymmetry in a solvable short-range model,
Int. J. Mod. Phys. A 21 (2006) 2173-2190

(ii) parallel solvable **difference** Schrödinger equations: [N = 7 sample: PTO]

$$\begin{pmatrix} i\xi - F & -1 & & \\ \hline -1 & -F & -1 & & \\ & -1 & -F & -1 & \\ & & -1 & -F & -1 \\ \hline & & & -1 & -F & -1 \\ \hline & & & & -1 & -i\xi - F \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \hline \gamma_0 \\ \gamma_0 \\ \gamma_0 \\ \hline \gamma_0 \\ \gamma_0 \\ \hline \hline \gamma_0 \\$$

$$F_0 = 0, \quad F_{\pm,\pm} = \pm \frac{1}{2}\sqrt{8 - 2\xi^2 \pm 2\sqrt{4 + \xi^4}}.$$

 $F_{\pm,-}$ responsible for EP, $\xi_{crit} = \sqrt{3/2} \approx 1.2247 \text{ (PTO)}$

Figure 4: RK spectrum at N = 7, single fragile pair of $E_{1,3}$

$$F_{\pm,+} = \pm \sqrt{3} \left[1 - \frac{1}{12} \xi^2 + \frac{5}{288} \xi^4 + \frac{5}{3456} \xi^6 + O\left(\xi^8\right) \right]$$
$$F_{\pm,+} = \pm \sqrt{2} \left[1 + \frac{1}{4} y^2 - \frac{1}{32} y^4 - \frac{31}{128} y^6 + O\left(y^8\right) \right], \quad y = 1/\xi.$$

RUNGE KUTTA QM: SUMMARY

 \heartsuit feasible EP constructions

 \diamondsuit a useful guidance towards $N \to \infty$

 \blacklozenge oversimplified, tuned to 1D dynamics,

 \clubsuit not enough structural flexibility in $O\triangle E$

 \implies idea: try to move to 2D:

 $(x, y) \longrightarrow (x, y_n)$ with $n = 1, \ldots, K$.

(2) COUPLED-CHANNEL QM

(K = 2) two-by-two Hamiltonian, differential in x:

$$H_{(kinetic)} = \begin{pmatrix} -\frac{d^2}{dx^2} & 0\\ 0 & -\frac{d^2}{dx^2} \end{pmatrix},$$
$$H_{(interaction)} = \begin{pmatrix} V_a(x) & W_b(x)\\ W_a(x) & V_b(x) \end{pmatrix}$$

•

 \heartsuit 2D Hamiltonians which are only discretized in y

 $\Diamond \theta$ -pseudo-Hermiticity:

$$\theta = \theta^{\dagger} = \begin{pmatrix} 0 & \mathcal{P} \\ & \\ \mathcal{P} & 0 \end{pmatrix} = \theta^{-1}$$

 \heartsuit square-well potentials $[x \in (-1, 0)]$:

$$\operatorname{Im} W_a(x) = X > 0,$$
$$\operatorname{Im} W_b(x) = Y > 0,$$
$$\operatorname{Im} V_a(x) = \operatorname{Im} V_b(x) = Z,$$

• spin-like ($\sigma = \pm 1$) symmetry:

$$\Omega = \begin{pmatrix} 0 & \omega^{-1} \\ & \\ \omega & 0 \end{pmatrix}, \qquad \omega = \sqrt{\frac{X}{Y}} > 0.$$

\clubsuit solvable and physical

M. Znojil (quant-ph/0511085),
Coupled-channel version of PT-symmetric square well,
J. Phys. A: Math. Gen. 39 (2006) 441 - 455.

(K = 3) next, three-by-three square well:

$$H_{(kinetic)} = \begin{pmatrix} -\frac{d^2}{dx^2} & 0 & 0\\ 0 & -\frac{d^2}{dx^2} & 0\\ 0 & 0 & -\frac{d^2}{dx^2} \end{pmatrix},$$
$$\mathbf{Z}_{(interaction,K=3)} = \begin{pmatrix} Z_{(1,1)} & Z_{(1,2)} & Z_{(1,3)}\\ Z_{(2,1)} & Z_{(2,2)} & Z_{(2,3)}\\ Z_{(3,1)} & Z_{(3,2)} & Z_{(3,3)} \end{pmatrix}.$$

with two "strong" θ -pseudo-Hermiticities:

$$\theta = \theta_{(3,1)} = \begin{pmatrix} 0 & 0 & \mathcal{P} \\ \mathcal{P} & 0 & 0 \\ 0 & \mathcal{P} & 0 \end{pmatrix} = \theta_{(3,2)}^{\dagger} = \theta_{(3,2)}^{-1} \neq \theta^{\dagger},$$
$$\theta_{(3,2)} = \begin{pmatrix} 0 & \mathcal{P} & 0 \\ 0 & 0 & \mathcal{P} \\ \mathcal{P} & 0 & 0 \end{pmatrix} = \theta_{(3,1)}^{\dagger} = \theta_{(3,1)}^{-1} \neq \theta_{(3,2)}^{\dagger}.$$

an emergence of a factorized symmetry

In the "strong" case we have $\theta^{\dagger} \neq \theta = \mathbf{R}$ in

$$H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1} \,.$$

A few observations should be made

observation 1

if we wish that

$$H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1}$$

then

$$H = \left(H^{\dagger}\right)^{\dagger} = \left(\mathbf{R}^{-1}\right)^{\dagger} \quad H^{\dagger} \quad \mathbf{R}^{\dagger}$$

observation 2

if we wish that

$$H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1}$$

then

$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \quad H^{\dagger} \quad \mathbf{R}^{\dagger}$$
$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \mathbf{R} H \mathbf{R}^{-1} \mathbf{R}^{\dagger}$$

observation 3

if we wish that

$$H^{\dagger} = \mathbf{R} H \mathbf{R}^{-1}$$

then

$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \quad H^{\dagger} \quad \mathbf{R}^{\dagger}$$
$$H = (H^{\dagger})^{\dagger} = (\mathbf{R}^{-1})^{\dagger} \mathbf{R} H \mathbf{R}^{-1} \mathbf{R}^{\dagger}$$
$$H = (H^{\dagger})^{\dagger} = \mathcal{S} \quad H \quad \mathcal{S}^{-1}$$

\blacklozenge This means that

our H must have a **factorized** symmetry,

$$H S = S H, \qquad S = \left(\mathbf{R}^{-1}\right)^{\dagger} \mathbf{R}$$
\blacklozenge This means that

our H must have a **factorized** symmetry,

$$H S = S H, \qquad S = \left(\mathbf{R}^{-1}\right)^{\dagger} \mathbf{R}$$

and we have two possibilities:

• either S = I (i.e., $\mathbf{R} = \mathbf{R}^{\dagger}$), pseudo-Hermiticity

\blacklozenge This means that

our H must have a **factorized** symmetry,

$$H S = S H, \qquad S = \left(\mathbf{R}^{-1}\right)^{\dagger} \mathbf{R}$$

and we have two possibilities:

- either S = I (i.e., $\mathbf{R} = \mathbf{R}^{\dagger}$), pseudo-Hermiticity
- or $S \neq I$ (proper "factorized symmetry").

\diamond factorized symmetry constraints (for SQWs)

In three channels we get a ${\bf unique}$ 2-parametric set

$$\mathbf{Z}_{(interaction)} = \begin{pmatrix} Z & X & X \\ X & Z & X \\ X & X & Z \end{pmatrix}$$

and define $Z_{(eff)}(m)$ = eigenvalues of **Z**,

$$Z_{eff}(1) = Z + 2X, \qquad Z_{eff}(2,3) = Z - X.$$

 \heartsuit all = solvable again, via a 'new curve':

 $t = t^{(\sigma)}(s) = \frac{1}{2s} Z_{eff}(\sigma), \quad \sigma = 1, 2, 3$

[cf. M. Znojil (quant-ph/0601048), Strengthened PT-symmetry with $P \neq P^{\dagger}$ Phys. Lett. A 353 (2006) 463 - 468].

new: degeneracy of levels $\sigma = 2, 3$,

EPs: a boundary $\partial \Omega^{(3)}$ of a triangle (PTO)

Figure 5: Triangular quasi-Hermiticity domain at K = 3

energies real for $X - Z_{crit} \leq Z \leq Z_{crit} - 2X$,

EP vertices $(0, \pm 4.475)$ and (2.98, -1.49).

COUPLED-CHANNEL QM: SUMMARY

 \heartsuit an innovation of the concept of symmetries

 \diamondsuit EPs from a routine square-well solvability

 \blacklozenge an interpretation of $S \neq I$ is missing,

 \clubsuit not worked out at the higher spins

 \implies an **alternative** natural option:

a universal ${\bf biorthogonal\ basis}$

(3) VARIATIONAL QM

initial Schrödinger equation

say, ODE with $x \in (-\infty, \infty)$, \mathcal{PT} -symmetric:

$$\begin{split} H &= -\frac{d^2}{dx^2} + U(x) + \mathrm{i}\,W(x) \neq H^\dagger, \\ U(x) &= U(-x)\,, \quad W(x) = -W(-x) \end{split}$$

represented in a **partitioned** variational basis,

$$|\psi_{+}\rangle = \sum_{m=0}^{N_{+}} |2m\rangle \phi_{m}, \quad |\psi_{-}\rangle = \sum_{m=0}^{N_{-}} |2m+1\rangle \chi_{m}$$

using the \mathcal{PT} -symmetric normalization,

$$|\psi\rangle = |\psi_{+}\rangle - \mathrm{i} |\psi_{-}\rangle.$$

having to solve ${\bf two}$ Schrödinger equations at once:

$$H|n\rangle = E_n|n\rangle$$

and

$$\langle\!\langle n|H = E_n \langle\!\langle n|$$

we arrive at the $\mathbf{partitioned}$ infinite-dimensional

$$H = \begin{pmatrix} S & +B \\ \\ -B^T & L \end{pmatrix}$$

while \mathcal{PT} -symmetry implies that

$$|n\rangle = \begin{pmatrix} \vec{\phi}_n \\ \\ \vec{\chi}_n \end{pmatrix}, \quad |n\rangle\rangle = \begin{pmatrix} \vec{\phi}_n \\ \\ -\vec{\chi}_n \end{pmatrix}$$

•

\diamond recipes: linear algebra:

 $H^{\dagger} = \Theta H \Theta^{-1}, \qquad I \neq \Theta = \Theta^{\dagger} > 0.$ with $H = \sum_{n} |n\rangle \frac{E_{n}}{\langle \langle n | n \rangle} \langle \langle n |$ and $\Theta = \sum_{n} |n\rangle t_{n} \langle \langle n |$

spectra: results, in general, numerical

Å

illustration: \exists a nice extension

of the above-mentioned two-by-two toy problem to $\dim =3$,

$$H^{(3)} = \begin{pmatrix} -1 & a & d \\ -a & 1 & b \\ d & -b & 3+c \end{pmatrix}, \qquad \mathcal{P}^{(3)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

\heartsuit in this model

Jacobi rotation annihilates d = 0,

$$H^{(3)} = \begin{pmatrix} -1 & a & 0 \\ -a & 1 & b \\ 0 & -b & 3+c \end{pmatrix}$$

\heartsuit \heartsuit in this model

all $c \neq -2$ are easy to incorporate in the formulae, and a two-parametric "representative Hamiltonian" results,

$$H^{(3)} = \begin{pmatrix} -2 & a & 0 \\ -a & 0 & b \\ 0 & -b & 2 \end{pmatrix}$$

\heartsuit \heartsuit \bigtriangledown in this model

the EP set $\partial \Omega^{(3)}$ has a "generic" shape,

Figure 6: Domain $\Omega(a, b)$ for $H = H^{(3)}$

with two-dimensional fixed -b subdomains $\Omega_{(b)}^{(2)}(a)$

Figure 7: The $b-{\rm dependence}$ of the interior of $\Omega^{(3)}(a,b)$

\heartsuit \heartsuit \heartsuit \bigtriangledown in this model

conclude: after a re-coupling, $b = 0 \longrightarrow b > 0$,

EPs of a "decoupled system" (= $\partial \Omega^{(3)}(a, 0) = \pm 1$),

become physical, stabilized, "regularized"

by having **moved inside** $\Omega_{(b)}^{(2)}(a) = (-\gamma(b), \gamma(b))$

where, e.g., $\gamma(1/2) \approx 1.04237$.

\heartsuit \heartsuit \heartsuit \heartsuit \heartsuit in this model

 $t \in (-1, 1)$ parametrizes the **whole** curve $\partial \Omega^{(3)}$,

$$a = a_{\pm} = \pm \sqrt{\frac{1}{2} (4 - 3t^2 - t^3)},$$
$$b = b_{\pm} = \pm \sqrt{\frac{1}{2} (4 - 3t^2 + t^3)}$$

(trick to be remembered!)

more details:

M. Znojil (quant-ph/0701232), A return to observability near exceptional points in a schematic PT-symmetric model. Phys. Lett. B 647 (2007) 225 - 230.

VARIATIONAL QM: SUMMARY

 \heartsuit straightforward calculations (linear algebra)

 \diamondsuit reliable (variational) background at $N\gg 1$

 \blacklozenge too numerical in general (too many free parameters)

 \clubsuit analytic insight (N=3) looks exceptional

 \implies **remedy**: choose some of the parameters in advance.

Chapter III. TRIDIAGONALIZATIONS:

•

 ${\it K}$ coupled square wells in a chain

THE MENU

(1) RUNGE KUTTA[tridiagonal by itself in 1D: omitted]

(2) COUPLED CHANNELS[surprise: ∃ circular-chain semi-tridiagonalizations !]

(3) BIORTHOGONAL **BASES**[main news on EPs, postponed to ch. IV]

Section III. A. K > 1 parallels

•

to the single-channel case

(i) \exists formulae for wave functions:

 $\mathbf{square\text{-well}\ ODE}$ with constant coefficients:

$$-\frac{d^2}{dx^2}\varphi^{(m)}(x) + \sum_{j=1}^K V_{Z_{(m,j)}}(x)\varphi^{(j)}(x) =$$
$$= E\varphi^{(m)}(x), \qquad m = 1, 2, \dots, K$$

solvable by an ansatz

$$\varphi^{(m)}(x) = \begin{cases} C_L^{(m)} \sin \kappa_L(x+1), & x < 0, \\ \\ C_R^{(m)} \sin \kappa_R(-x+1), & x > 0 \end{cases}$$

using $Z_{(eff)}^{(m)}(K)$ as eigenvalues of

$$\left(\begin{array}{ccccc} Z_{(1,1)} & Z_{(1,2)} & \dots & Z_{(1,K)} \\ \\ Z_{(2,1)} & Z_{(2,2)} & \dots & Z_{(2,K)} \\ \\ \vdots & \ddots & \ddots & \vdots \\ \\ Z_{(K,1)} & Z_{(K,2)} & \dots & Z_{(K,K)} \end{array}\right).$$

(ii) quantized easily:

ansatz and its insertion:

$$\kappa_R = s + it = \kappa_L^*, \quad s > 0,$$

$$\rightarrow t = X_{first \ curve} \left[Z_{(eff)}^{(m)}(K), s \right] \equiv \frac{Z_{(eff)}^{(m)}(K)}{2s}$$

plus **matching** condition in the origin:

 $\rightarrow t = Y_{second\ curve}(s)$

 $Y_{second\ curve}(s)$: $\kappa_L \cot n \kappa_L = -\kappa_R \cot n \kappa_R$

 \rightarrow implicit definition:

$$2s\,\sin 2s + 2t\,\sinh 2t = 0$$

 \rightarrow energies:

$$E_n = s_n^2 - t_n^2, \quad n = 0, 1, \dots$$

= **intersections** (s_n, t_n) of two graphs (PTO)

sample of the graphical recipe:

Figure 8: Square-well energies

(iii) the SAME algorithm determining EPs:

$$= \operatorname{hint} \to 2 \, s = (n+1)\pi + (-1)^n \, Q$$
$$\frac{Q}{2} \Big|_{crit} \equiv \varepsilon(t_{crit}) = \pi - \frac{Z_{crit}}{2t_{crit}},$$
$$\sin\left[2 \, \varepsilon(t)\right] = \frac{t \, \sinh \, 2t}{\pi - \varepsilon(t)},$$

 $\varepsilon_{(lower)}(t) = \pi/4$ and $\varepsilon_{(upper)}(t) = 0$.

Newton's method:

$$\partial_t \varepsilon(t_{crit}) = \frac{Z_{crit}}{2t_{crit}^2},$$
$$\partial_t \varepsilon(t) = \frac{\sinh 2t + 2t \cosh 2t}{2 \left[\pi - \varepsilon(t)\right] \cos 2\varepsilon(t) - \sin 2\varepsilon(t)}$$

a sample result:

- $\rightarrow t_{crit} \in (0.839393459, 0.839393461),$
- $\rightarrow s_{crit} \in (2.665799044, 2.665799069),$
- $\rightarrow E_{crit} \in (6.401903165, 6.401903294).$

iteration	$Z_{crit}^{(lower)}$	$Z_{crit}^{(upper)}$
0	4.30	4.66
2	4.461	4.486
4	4.4743	4.4760
6	4.47524	4.47536
8	4.4753038	4.475312
10	4.47530826	4.47530882
12	4.47530856	4.47530861

(iv) formulae in weakly non-Hermitian regime:

$$s = s_n = \frac{(n+1)\pi}{2} + \tau \frac{Q_n}{2}, \quad \tau = (-1)^n$$

\rightarrow iterate:

the first small quantity $\rho \equiv \frac{1}{L} = \frac{1}{(n+1)\pi}$

the second one $\alpha = \frac{2 Z_{eff}(\sigma)}{L}$ or $\beta = \alpha \varrho$

(v) at **intermediate** non-Hermiticities:

 \rightarrow a "generalized continued fraction"

$$Q = \arcsin\left(2t \frac{\varrho}{1+\tau Q \varrho} \sinh 2t\right), \quad 2t = \frac{\alpha}{1+\tau Q \varrho}.$$

$$\rightarrow \arcsin(x) = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots$$

$$Q = Q(\alpha, \beta) = \alpha\beta \Omega(\alpha, \beta),$$

$$\rightarrow \Omega(\alpha, \beta) = 1 + c_{10} \alpha^2 + c_{01} \beta^2 + c_{20} \alpha^4 + c_{11} \alpha^2 \beta^2 + c_{02} \beta^4 + \mathcal{O}(\alpha^6)$$

 \rightarrow equation **re-arranged**:

$$[1 + \tau \beta^2 \Omega(\alpha, \beta)] \operatorname{arcsinh}(\Lambda) = \alpha$$

$$\Lambda = [1 + \tau \,\beta^2 \Omega(\alpha, \beta)]^2 \,\frac{1}{\beta} \,\sin[\alpha\beta \,\Omega(\alpha, \beta)]$$
(vi) formulae for energies:

 \rightarrow leading order relation

$$0 = \left(-\frac{1}{6} + c_{10} + c_{01}\varrho^2 + 3\tau \varrho^2\right)\alpha^3 + \dots$$

determines the first two coefficients,

$$c_{10} = \frac{1}{6}, \qquad c_{01} = -3\tau \,,$$

the next-order $O\left(\alpha^{5}\right)$ gives

$$c_{20} = \frac{1}{120}, \qquad c_{11} = \frac{1-8\tau}{6}, \qquad c_{02} = 15$$

and leads to our **final** $1 + O(\alpha^4)$ formula

$$Q_n = \frac{4 Z_{eff}^2}{(n+1)^3 \pi^3} + \frac{8 Z_{eff}^4}{3 (n+1)^5 \pi^5} \left(1 + \frac{18 (-1)^{n+1}}{(n+1)^2 \pi^2} \right).$$

Section III. B. There \exists a semi-tridiagonalization

•

of 2J + 1 coupled square wells

At any K, let's use $\mathbf{R}^{-1} = \mathbf{R}^{\dagger}, \, \mathcal{S} = \mathbf{R}^{2}$

$$\mathbf{R} = \begin{pmatrix} 0 & \dots & 0 & 0 & \mathcal{P} \\ \mathcal{P} & 0 & \dots & 0 & 0 \\ 0 & \mathcal{P} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \mathcal{P} & 0 \end{pmatrix}$$

$$\mathbf{Z}_{(interaction)} = \begin{pmatrix} Z & X & D & D & X \\ X & Z & X & D & D \\ D & X & Z & X & D \\ D & D & X & Z & X \\ X & D & D & X & Z \end{pmatrix}$$

which is "next to tridiagonal" at D = 0,

$$\mathbf{Z}_{(interaction)} = \begin{pmatrix} Z & X & & X \\ X & Z & X & \\ & X & Z & X \\ & & X & Z & X \\ & & & X & Z & X \\ X & & & X & Z \end{pmatrix}$$

•

For 7 **channels**, similarly, the allowed matrix of couplings

becomes "almost tridiagonal" at Y = D = 0:

$$\mathbf{Z}_{(interaction)} = \begin{pmatrix} Z & X & & & X \\ X & Z & X & & & \\ & X & Z & X & & \\ & & X & Z & X & \\ & & & X & Z & X \\ & & & & X & Z & X \\ & & & & & X & Z \end{pmatrix}.$$

COUPLED-CHANNEL CHAINS: SUMMARY

 \heartsuit an innovation of the concept of the chain model \diamondsuit the solvability extended to the large "spins" K = 2J + 1 \blacklozenge not so nice at even K = 2J (why? - an open question)

 \clubsuit no free parameters: $\partial \Omega^{(EP)} =$ piecewise linear

Chapter IV.

•

SEPARABLY ANHARMONIC OSCILLATORS AND THEIR EXCEPTIONAL POINTS

THE MENU

(A) COUPLED HARMONIC-OSCILLATOR LEVELS $[N < \infty, \text{ an auxiliary upside-down symmetry}]$

(B) FULL, MAXIMAL CONFLUENCE OF EPs [the results of **symbolic manipulations**]

(C) THE PATTERN OF DECONFLUENCE [the shape of $\partial \Omega^{(N)}$, strong-coupling regime]

Section IV. A. The family of models

•

The separable AHO bound-state problem with

$$H_{(int)} = \mathrm{i} g (| 0 \rangle \langle 1 | + | 1 \rangle \langle 0 |)$$

is equivalent to the above-mentioned matrix model

$$\begin{pmatrix} -1 & g \\ & \\ -g & 1 \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = E \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$

M. Znojil and H. B. Geyer (quant-ph/0607104),

Construction of a unique metric in quasi-Hermitian quantum mechanics. Phys. Lett. B 640 (2006) 52 - 56

For the same toy problem

$$H^{(2)}\begin{pmatrix} \phi\\ \chi \end{pmatrix} = E\begin{pmatrix} \phi\\ \chi \end{pmatrix}, \qquad H^{(2)} = \begin{pmatrix} -1 & a\\ & \\ -a & 1 \end{pmatrix}$$

 \exists a straightforward generalization (PTO):

 \heartsuit the chain-model family \heartsuit

$$H^{(N)} = \begin{bmatrix} 1 - N & a & 0 & 0 & \dots & 0 \\ -a & 3 - N & b & 0 & \dots & 0 \\ 0 & -b & 5 - N & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & b & 0 \\ \vdots & \vdots & \ddots & -b & N - 3 & a \\ 0 & 0 & \dots & 0 & -a & N - 1 \end{bmatrix}.$$

 \heartsuit sample: the **four by four** secular equation

$$\det \begin{bmatrix} 3-E & b & 0 & 0 \\ -b & 1-E & a & 0 \\ 0 & -a & -1-E & b \\ 0 & 0 & -b & -3-E \end{bmatrix} = 0$$

with $a = \pm \sqrt{A}$, $b = \pm \sqrt{B}$ gives $E = \pm \sqrt{s}$.

This facilitates the study of EPs, e.g., via the

brute-force numerical determination of $\partial \Omega^{(4)}$:

Figure 9: The least stable energy pair $E_{\pm} = \pm \sqrt{s(A,B)}$

Section IV. B. A maximal confluence of EPs

•

Figure 9 indicates that the EP shape $\partial \Omega^{(4)}$ for

$$H^{(4)} = \begin{pmatrix} 3-E & b & 0 & 0 \\ -b & 1-E & a & 0 \\ 0 & -a & -1-E & b \\ 0 & 0 & -b & -3-E \end{pmatrix}$$

is sharply spiked near $a_{max}^{(EEP)} \approx 2$ and $b_{max}^{(EEP)} \approx \sqrt{3}$.

We intend to demonstrate that this feature is **generic**.

The N = 4 **EEP construction** using secular equation

$$s^{2} + (-10 + 2b^{2} + a^{2})s + 9 + 6b^{2} - 9a^{2} + b^{4} = 0$$

compared with $s^2 = 0$ at an extreme EP (EEP).

Gröbner-solvable two conditions:

$$A + 2B = 10,$$
 $(3 + B)^2 = 9A$

spurious solution: A = 64, B = -27,

the acceptable pair is unique: $A^{(EEP)} = 4$, $B^{(EEP)} = 3$.

EEP construction at any other N: **the method**:

(a) split the models $H^{(N)}$ in **two series:**

with N = 2K and with N = 2J + 1

(b) construct explicit **Gröbner** EEP solutions

(at the first few N)

(c) **extrapolate** to all N

(and verify at the next few N).

 $\diamond \quad \blacklozenge \quad \diamond \quad \text{the result:} \quad \diamond \quad \diamondsuit \quad \diamond$

a re-parametrization of the couplings:

$$a^{2} = G_{1}^{(N)} (1 - \alpha) , \qquad b^{2} = G_{2}^{(N)} (1 - \beta) , \qquad \dots,$$

$$G_{k}^{\left(N\right) }=k\left(N-k\right) .$$

with the innovated Greek-letter parameters $\in (0, 1)$.

sampling the proof: N = 8:

(1) **consider** secular equation (1)

$$s^4 + P_3 s^3 + P_2 s^2 + P_1 s + P_0 = 0$$

 $\implies \Omega^{(8)}(A, B, C, D)$ circumscribed by the simplex

A + 2B + 2C + 2D = 84.

(2) take quadratic P₂, cubic P₁ and quartic P₀ containing 13,
19 and 20 individual terms, respectively, reduce, e.g.

$$P_{2} = 1974 + (B + C + D)^{2} + 2AD + 2BD + 2AC + 50D - (83A + 142B + 70C)$$

& Gröbner-solve the EEP set of nonlinear equations

 $P_2(A,B,C,D)=0,\ P_1(A,B,C,D)=0,\ P_0(A,B,C,D)=0$

(3) find and factorize the resulting polynomial

$$\begin{split} & 314432 \ D^{17} - 5932158016 \ D^{16} + 4574211144896 \ D^{15} + \\ & + 3133529909492864 \ D^{14} + 917318495163561932 \ D^{13} + \dots \\ & \dots + 235326754101824439936800228806905073 \ D^2 - \\ & - 453762279414621179815552897029039797 \ D + \\ & + 153712881941946532798614648361265167 = 0 \end{split}$$

(4) **demonstrate** that 16 roots are spurious:

(i) easy for all the complex roots;

(ii) easy for the three real but manifestly spurious negative roots

D = -203.9147095, -156.6667001, -55.49992441.

(iii) most complicated for the four real and positive roots

D = 0.4192854385, 5.354156128, 1354.675195 and 18028.16789.

In the latter case, for example, one finds the spurious negative value for

 $\Upsilon^2 \times A =$ (a polynomial in *D* of 16th degree).

No chance without computers: the number of digits in Υ^2 exceeds one hundred.

(5) **conclude** that the remaining closed solution

$$A^{(EEP)} = 16, \ B^{(EEP)} = 15, \ C^{(EEP)} = 12, \ D^{(EEP)} = 7$$

is unique.

QED.

Summary of the merits of the model:

- provides *all* types of the **confluence of EPs**
- *precisely* the necessary number of parameters.

More details:

M. Znojil (math-ph/0703070),
Maximal couplings in PT-symmetric chain-models with the real spectrum of energies.
J. Phys. A: Math. Theor. 40 (2007) 4863 - 4875

Section IV. C.

•

The strong-coupling mechanism of the split

of the EPs near EEPs

Let's recollect the **smoothness** of the surface $s(A, B) = E^2$,

Figure 10: Second sheet of $s(A, B) (\leq 14)$ added to Fig. 9.

reparametrize the matrix elements of $H^{(4)}$ accordingly,

$$\begin{pmatrix} -3 & \sqrt{3}\sqrt{1-\beta} & 0 & 0\\ -\sqrt{3}\sqrt{1-\beta} & -1 & 2\sqrt{1-\alpha} & 0\\ 0 & -2\sqrt{1-\alpha} & 1 & \sqrt{3}\sqrt{1-\beta}\\ 0 & 0 & -\sqrt{3}\sqrt{1-\beta} & 3 \end{pmatrix}$$

and reparametrize also its QH domain $\Omega^{(4)}$,

$$\beta \ge \beta_{minimal} = \frac{9\,\alpha - \alpha^2}{9 + 3\,\alpha}, \qquad \alpha \in (0, 1)$$

$$\alpha \ge \alpha_{minimal} = \beta - \frac{\beta^2}{4}, \qquad \beta \in (0, 1)$$

$$\beta = t + t^2 B(t), \qquad \alpha = t + t^2 A(t)$$

M. Znojil, Conditional observability,Phys. Lett. B, to appear (arXiv:0704.3812v1 [hep-th] 28 Apr 2007)

 \diamondsuit beyond the EEP we can get a "big bang" phenomenon,

Figure 11: The t- dependence of the energy levels at A=B=1. Note that $\alpha=\beta=1$ at the Hermiticity boundary

 $t_{Herm.} = (\sqrt{5} - 1)/2 \approx 0.618033989.$

 \diamondsuit \diamondsuit at A = 2, B = 1 we get a non-EEP pattern,

Figure 12: Two "simultaneous small bangs" at an EP value $t_{(EP)} > 0$. Note that the $\alpha(t) = 1$ line (i.e., the end of PT-symmetry) comes earlier than $\beta(t) = 1$ (i.e., the Hermiticity boundary).

Figure 13: Quasi-Hermiticity established at $t_{(EP)} > 0.2$.

subconclusions: inside Ω ,

- \exists a fine-tuned balance between $\alpha(t)$ and $\beta(t)$,
- \exists all the possible patterns of mergers between levels.

conjecture:

both properties are, mutatis mutandis, valid at all N
\heartsuit test at the **six by six** $H^{(6)}$,

$$g_1 = c = \sqrt{5(1-\gamma)}, \quad g_2 = b = 2\sqrt{2(1-\beta)},$$

 $g_3 = a = 3\sqrt{1-\alpha}$

with

$$\alpha = t + t^2 + A t^3$$
, $\beta = t + t^2 + B t^3$, $\gamma = t + t^2 + C t^3$.

 \diamondsuit the "big bang" spectrum beyond the EEP again,

Figure 14: Energy levels at A = B = C = 1.

 \diamondsuit \diamondsuit the choice of A = 1, B = 2, C = 1 gives

Figure 15: Real parts of the energies, "central" $t_{(EP)} > 0.5.$

Figure 16: Quasi-Hermiticity established at the ground state.

conclusions: conjecture confirmed at N = 6:

 $\exists \quad \textbf{a fine-tuned balance} \text{ between } \alpha, \ \beta \text{ and } \gamma$

 \exists all the possible merging patterns again.

conjecture: at any N = 2J (+1) one should parametrize

$$g_n = \sqrt{n (N - n) (1 - \xi_n)}, \qquad \xi_n = t + t^2 + \ldots + t^{J-1} + G_n t^J,$$

 $n = 1, 2, \ldots, J.$

SUMMARY OF THE MODEL:

 $\mathrm{IT}~\mathrm{IS}$

friendly: maximal (EEP) couplings = integers,
sufficient: all the EP-merging patterns are encountered
representative: its symmetry is "maximal"

necessary: *couldn't* manage with *less* free parameters

Chapter V.

•

IN PLACE OF AN OVERALL SUMMARY

FOUR KEY MESSAGES

to take home:

(α) DISCRETIZATIONS REVIEWED (main merit: the variability of N)

(β) CHAIN-MODELS PROMOTED (facilitated treatment, due to tridiagonality)

(γ) BRUTE-FORCE CALCULATIONS REPORTED (an insight in EPs, based on symbolic manipulations)

(δ) EXTRAPOLATIONS PERFORMED/RECOMMENDED (EP systematics)

END OF THE STORY

appendices

A BRIEF INTRODUCTION IN

QUASI-HERMITIAN QUANTUM MECHANICS

(1) Two Schroedinger equations in place of one,

$$H|n\rangle = E_n|n\rangle$$
 and $\langle\langle n|H = E_n\langle\langle n|.$

(2) Quasi-Hermiticity in place of Hermiticity,

$$H^{\dagger} = \Theta H \Theta^{-1}, \qquad I \neq \Theta = \Theta^{\dagger} > 0.$$

(3) A "generalized Dirac" notation,

$$H = \sum_{n} |n\rangle \frac{E_{n}}{\langle \langle n | n \rangle} \langle \langle n |$$

(4) The multiparametric "choice of physics",

$$\Theta = \sum_{n} |n\rangle \partial \theta_n \langle \langle n|, \qquad \theta_n > 0.$$

Illustration:

construction of the metric Θ for a 2 \times 2 Hamiltonian,

$$H = \begin{pmatrix} -T & B \\ -B & T \end{pmatrix}, \quad \Theta = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$$
$$\Theta H = H^T \Theta \Longrightarrow 2bT = -B(a+d)$$

$$E \in I\!\!R \iff |T| \ge |B|, \quad B = T \sin \alpha$$

ambiguity (the whole **interval** of a free parameter):

setting T = 1 and a + d = 2Z > 0 we have

$$H = \begin{pmatrix} -1 & \sin \alpha \\ & & \\ -\sin \alpha & 1 \end{pmatrix}, \quad \Theta/Z = \begin{pmatrix} 1+\xi & \sin \alpha \\ & & \\ \sin \alpha & 1-\xi \end{pmatrix}$$

positivity $\theta_{1,2}/Z = 1 \pm \sqrt{\xi^2 + \sin^2 \alpha} > 0$ means $1 > \sqrt{\xi^2 + \sin^2 \alpha}$

solutions $\Theta = \Theta(\xi)$ are numbered by $0 < \xi < \cos \alpha$.

interpretation:

In 2D with biorthogonal "brabraket" basis,

$$\langle \langle n | H = \langle \langle n | E_n, H | n \rangle = E_n | n \rangle$$

ambiguity is compatible with the universal formula

$$\Theta = \Sigma |n\rangle\rangle s_n \langle \langle n|, \quad s_k > 0.$$