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Chapter I. INTRODUCTION
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EXCEPTIONAL POINTS?

definition 1 (the most elementary one):

The points of the loss of the reality

of the least stable pair

of the bound-state energies of H
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♥ CHARACTERISTIC ODE MODEL:

see E = k2 in M. Znojil, PT-symmetric square well,

Phys. Lett. A 285 (2001) 7-10:
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Figure 1: The least stable square-well energies are the lowest ones
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♦ AN EVEN MORE ELEMENTARY

SCHEMATIC MATRIX MODEL:




−1 b

−b 1







φ

χ




= E




φ

χ




E = E± =
√

1− b2,

Ω = D(1) = (−1, 1).
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EXCEPTIONAL POINTS?

definition 2 (“in physics”):

certain points where “something is happening”

or, often, where “something goes wrong”;

a typical “physical” EP: the α = 0 trigger

of the “fall on the center” in V (r) ∼ α2−1/4
r2
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♠ A SAMPLE OF EPs IN REAL LIFE

catastrophes in strong fields (Dirac equation: Greiner ’68),

complex EPs in perturbation theory (BW ’69:
√

. . . for AHOs),

in magnetohydrodynamics (Günther et al, this conference),

in nuclear physics: Scholtz et al, Heiss et al, Rotter et al,

in supersymmetric models: many authors,

in relativistic models: AM ’04 etc

etc.
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♥ MODELS WITH EPs LOOK INNOVATIVE

physics can be unusual (non-local, superluminal, dissipative, . . . )

one could circumvent no-go theorems (e.g., in supersymmetry)

relativistic (e.g., Proca) equations appear in a new perspective

MHD models = “physical” inside as well as outside Ω

last but, better, first, field theory
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math. guide: EP in HO at α → 0 and all n:

E+
n = 4n + 2 + 2α merges with E−

n = 4n + 2− 2α,

0
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α

Figure 2: Spectrum of the PT-symmetric harmonic oscillator
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♣ Unfortunately, HO is NOT GENERIC:

all the energies = suddenly complex iff α < 0 (degeneracy)

“isolated” degenerate EPs ∃ periodically in α

all the energies = linear in α

LHO obtained at α = 1
2 (equidistance, SUSY etc)

M. Znojil, PT-symmetric harmonic oscillators,

Phys. Lett. A 259 (1999) 220 - 223).
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EXCEPTIONAL POINTS?

definition 3 (à la T. Kato):

They form a boundary ∂Ω

of the domain Ω = Ω(H)

of the quasi-Hermiticity of H 6= H†
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an immediate task: the determination of ∂Ω

=⇒ CHALLENGE TO PHYSICS

EPs are rather rare in Hermitian worlds with H = H† (Heiss et al)

EP means a singularity in the metric Θ in quasi-Hermitian world
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an immediate task: the determination of ∂Ω

=⇒ CHALLENGE TO MATHEMATICS

♠ hard life beyond general four-by-four matrices H [N ]

M. Znojil, Determination of the domain of the admissible
matrix elements in the four-dimensional PT-symmetric

anharmonic model,

Phys. Lett. A, in print, online, quant-ph/0703168 (PTO).
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Figure 3: Graphical determination of the three-parametric domain Ω(4) = Ω(4)(a, b, c)

at a fixed c =
√

8/5, with the four “double” EPs x1, x2, x3, x4.
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AN AMBITION OF THIS TALK

SIMPLIFY SOME CURRENT HAMILTONIANS H 6= H†

[say, H = −4+ V (~x), via a discretization, chapter II]

REVIEW BRIEFLY THE GAINS

(results on matrices H = H‡ = Θ−1H†Θ inside Ω, ch. III,IV)

while trying to

formulate some generic conjectures on ∂Ω

(method: symbolic manipulations plus extrapolations)
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.

Chapter II. DISCRETIZATIONS
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A MENU

(1) RUNGE KUTTA QM

[any discrete one-dimensional H = p2 + V (x) 6= H†]

(2) THE OTHER LATTICES OF COORDINATES

[2D here, semi-discrete, coupled channels, square wells]

(3) BIORTHOGONAL BASES

[mainly variational, separably anharmonic oscillators]
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(1) RUNGE KUTTA QM IN 1D

coordinates: xk = xk−1 + h = −1 + kh,

h =
2

N
, x0 = −1, k = 1, 2, . . . , N

kinetic energy:

−ψ′′(x) ≈ −ψ(xk+1)− 2 ψ(xk) + ψ(xk−1)

h2

boundary conditions: ψ(x0) = ψ(xN) = 0
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leads to the Weigert’s matrix square well model

.



2 + 1
4 i Z −1 0

−1 2 −1

0 −1 2− 1
4 i Z
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γ
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=
1

4
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& its N > 4 generalizations with tridiagonal H ,

(PTO)
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−1 −F −1
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∃ AN EQUIVALENT REAL FORMULATION OF SE:



−F −ξ −1 0

ξ −F 0 −1

−1 0 −F −ξ . . .

0 −1 ξ −F . . .

. . . . . . . . . −1 0

. . . . . . . . . 0 −1

−1 0 −F −ξ −1

0 −1 ξ −F 0

−2 0 −F







a0

b0

a1

b1

...

...

an

bn

γ




= 0.
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SOLVABLE:

=⇒ by the matching method

=⇒ in closed complex form (Tschebyshev polynomials)

=⇒ in closed real form (matrix Tschebyshev)

M. Znojil (quant-ph/0605209),

Matching method and exact solvability of discrete

PT-symmetric square wells

J. Phys. A: Math. Gen. 39 (2006) 10247 - 10261
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MERIT: A PARALLELISM

(i) solvable differential Schrödinger equation:

B. Bagchi et al (quant-ph/0503035),

PT-symmetric supersymmetry in a solvable short-range model,

Int. J. Mod. Phys. A 21 (2006) 2173-2190

(ii) parallel solvable difference Schrödinger equations:

[N = 7 sample: PTO]
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iξ − F −1

−1 −F −1

−1 −F −1

−1 −F −1

−1 −iξ − F







α0

γ0

γ

γ∗0

α∗0




= 0.

F0 = 0, F±,± = ±1

2

√

8− 2 ξ2 ± 2
√
4 + ξ4.

F±,− responsible for EP, ξcrit =
√
3/2 ≈ 1.2247 (PTO)

24



–2

–1

0

1

2

1 2

E

ξ

Figure 4: RK spectrum at N = 7, single fragile pair of E1,3
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√
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RUNGE KUTTA QM: SUMMARY

♥ feasible EP constructions

♦ a useful guidance towards N →∞

♠ oversimplified, tuned to 1D dynamics,

♣ not enough structural flexibility in O4E

=⇒ idea: try to move to 2D:

(x, y) −→ (x, yn) with n = 1, . . . , K.
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(2) COUPLED-CHANNEL QM

(K = 2) two-by-two Hamiltonian, differential in x:

H(kinetic) =




− d2

dx2 0

0 − d2

dx2




,

H(interaction) =




Va(x) Wb(x)

Wa(x) Vb(x)




.

♥ 2D Hamiltonians which are only discretized in y
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♦ θ−pseudo-Hermiticity:

θ = θ† =




0 P

P 0




= θ−1

♥ square-well potentials [x ∈ (−1, 0)]:

Im Wa(x) = X > 0,

Im Wb(x) = Y > 0,

Im Va(x) = Im Vb(x) = Z,
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♠ spin-like (σ = ±1) symmetry:

Ω =




0 ω−1

ω 0




, ω =

√√√√√X

Y
> 0.

♣ solvable and physical

M. Znojil (quant-ph/0511085),

Coupled-channel version of PT-symmetric square well,

J. Phys. A: Math. Gen. 39 (2006) 441 - 455.

29



(K = 3) next, three-by-three square well:

H(kinetic) =




− d2

dx2 0 0

0 − d2

dx2 0

0 0 − d2

dx2




,

Z(interaction,K=3) =




Z(1,1) Z(1,2) Z(1,3)

Z(2,1) Z(2,2) Z(2,3)

Z(3,1) Z(3,2) Z(3,3)




.
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with two “strong” θ−pseudo-Hermiticities:

θ = θ(3,1) =




0 0 P

P 0 0

0 P 0




= θ†(3,2) = θ−1
(3,2) 6= θ†,

θ(3,2) =




0 P 0

0 0 P

P 0 0




= θ†(3,1) = θ−1
(3,1) 6= θ†(3,2).
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♣ an emergence of a factorized symmetry

In the “strong” case we have θ† 6= θ = R in

H† = RH R−1 .

A few observations should be made
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observation 1

if we wish that

H† = RH R−1

then

H =
(
H†)† =

(
R−1

)†
H† R†
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observation 2

if we wish that

H† = RH R−1

then

H =
(
H†)† =

(
R−1

)†
H† R†

H =
(
H†)† =

(
R−1

)†
RH R−1R†
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observation 3

if we wish that

H† = RH R−1

then

H =
(
H†)† =

(
R−1

)†
H† R†

H =
(
H†)† =

(
R−1

)†
RH R−1R†

H =
(
H†)† = S H S−1
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♠ This means that

our H must have a factorized symmetry,

H S = SH, S =
(
R−1

)†
R
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♠ This means that

our H must have a factorized symmetry,

H S = SH, S =
(
R−1

)†
R

and we have two possibilities:

• either S = I (i.e., R = R†), pseudo-Hermiticity
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♠ This means that

our H must have a factorized symmetry,

H S = SH, S =
(
R−1

)†
R

and we have two possibilities:

• either S = I (i.e., R = R†), pseudo-Hermiticity

• or S 6= I (proper “factorized symmetry”).
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♦ factorized symmetry constraints (for SQWs)

In three channels we get a unique 2-parametric set

Z(interaction) =




Z X X

X Z X

X X Z




and define Z(eff)(m) = eigenvalues of Z,

Zeff(1) = Z + 2 X, Zeff(2, 3) = Z −X .
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♥ all = solvable again, via a ‘new curve’:

t = t(σ)(s) = 1
2s Zeff(σ), σ = 1, 2, 3

[cf. M. Znojil (quant-ph/0601048),

Strengthened PT-symmetry with P 6= P†

Phys. Lett. A 353 (2006) 463 - 468].

new: degeneracy of levels σ = 2, 3,

EPs: a boundary ∂Ω(3) of a triangle (PTO)
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Figure 5: Triangular quasi-Hermiticity domain at K = 3

energies real for X − Zcrit ≤ Z ≤ Zcrit − 2X,

EP vertices (0,±4.475) and (2.98,−1.49).
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COUPLED-CHANNEL QM: SUMMARY

♥ an innovation of the concept of symmetries

♦ EPs from a routine square-well solvability

♠ an interpretation of S 6= I is missing,

♣ not worked out at the higher spins

=⇒ an alternative natural option:

a universal biorthogonal basis
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(3) VARIATIONAL QM

initial Schrödinger equation

say, ODE with x ∈ (−∞,∞), PT −symmetric:

H = − d2

dx2
+ U(x) + i W (x) 6= H†,

U(x) = U(−x) , W (x) = −W (−x)
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represented in a partitioned variational basis,

|ψ+〉 =
N+∑

m=0
| 2m〉φm, |ψ−〉 =

N−∑

m=0
| 2m + 1〉χm

using the PT −symmetric normalization,

|ψ〉 = |ψ+〉 − i |ψ−〉.
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having to solve two Schrödinger equations at once:

H|n〉 = En|n〉

and

〈〈n|H = En〈〈n|
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we arrive at the partitioned infinite-dimensional

H =




S +B

−BT L




while PT −symmetry implies that

|n〉 =




~φn

~χn




, |n〉〉 =




~φn

−~χn




.
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♦ recipes: linear algebra:

H† = Θ H Θ−1, I 6= Θ = Θ† > 0.

with H =
∑

n |n〉 En
〈〈n|n〉 〈〈n|

and Θ =
∑

n |n〉〉 tn 〈〈n|

♣ spectra: results, in general, numerical
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illustration: ∃ a nice extension

of the above-mentioned two-by-two toy problem to dim=3,

H(3) =




−1 a d

−a 1 b

d −b 3 + c




, P (3) =




1 0 0

0 −1 0

0 0 1




.
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♥ in this model

Jacobi rotation annihilates d = 0,

H(3) =




−1 a 0

−a 1 b

0 −b 3 + c
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♥ ♥ in this model

all c 6= −2 are easy to incorporate in the formulae, and

a two-parametric “representative Hamiltonian” results,

H(3) =




−2 a 0

−a 0 b

0 −b 2
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♥ ♥ ♥ in this model

the EP set ∂Ω(3) has a “generic” shape,
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b

Ω

Figure 6: Domain Ω(a, b) for H = H(3)
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with two-dimensional fixed−b subdomains Ω
(2)
(b)(a)

(b=0)

(b=1/2)

Ω

Ω

Figure 7: The b−dependence of the interior of Ω(3)(a, b)
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♥ ♥ ♥ ♥ in this model

conclude: after a re-coupling, b = 0 −→ b > 0,

EPs of a “decoupled system” (= ∂Ω(3)(a, 0) = ±1),

become physical, stabilized, “regularized”

by having moved inside Ω
(2)
(b)(a) = (−γ(b), γ(b))

where, e.g., γ(1/2) ≈ 1.04237.
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♥ ♥ ♥ ♥ ♥ in this model

t ∈ (−1, 1) parametrizes the whole curve ∂Ω(3),

a = a± = ±
√√√√√1

2
(4− 3t2 − t3),

b = b± = ±
√√√√√1

2
(4− 3t2 + t3)

(trick to be remembered!)
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more details:

M. Znojil (quant-ph/0701232),

A return to observability near exceptional points

in a schematic PT-symmetric model.

Phys. Lett. B 647 (2007) 225 - 230.
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VARIATIONAL QM: SUMMARY

♥ straightforward calculations (linear algebra)

♦ reliable (variational) background at N À 1

♠ too numerical in general (too many free parameters)

♣ analytic insight (N = 3) looks exceptional

=⇒ remedy: choose some of the parameters in advance.
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.

Chapter III. TRIDIAGONALIZATIONS:

K coupled square wells in a chain
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THE MENU

(1) RUNGE KUTTA

[tridiagonal by itself in 1D: omitted]

(2) COUPLED CHANNELS

[surprise: ∃ circular-chain semi-tridiagonalizations !]

(3) BIORTHOGONAL BASES

[main news on EPs, postponed to ch. IV]
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.

Section III. A. K > 1 parallels

to the single-channel case
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(i) ∃ formulae for wave functions:

square-well ODE with constant coefficients:

− d2

dx2
ϕ(m)(x) +

K∑

j=1
VZ(m,j)(x) ϕ(j)(x) =

= Eϕ(m)(x), m = 1, 2, . . . , K

60



solvable by an ansatz

ϕ(m)(x) =





C
(m)
L sin κL(x + 1), x < 0,

C
(m)
R sin κR(−x + 1), x > 0

61



using Z
(m)
(eff)(K) as eigenvalues of




Z(1,1) Z(1,2) . . . Z(1,K)

Z(2,1) Z(2,2) . . . Z(2,K)

... . . . . . . ...

Z(K,1) Z(K,2) . . . Z(K,K)




.
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(ii) quantized easily:

ansatz and its insertion:

κR = s + it = κ∗L, s > 0,

→ t = Xfirst curve

[
Z

(m)
(eff)(K), s

]
≡ Z

(m)
(eff)(K)

2s

plus matching condition in the origin:

→ t = Ysecond curve(s)
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Ysecond curve(s): κL cotan κL = −κR cotan κR

→ implicit definition:

2s sin 2s + 2t sinh 2t = 0

→ energies:

En = s2
n − t2n, n = 0, 1, . . . .

= intersections (sn, tn) of two graphs (PTO)
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sample of the graphical recipe:

0
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2
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Z=45

Z=15

Z=4.48

Z=1

t

s

Y(Z,t)

X(t)

Figure 8: Square-well energies
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(iii) the SAME algorithm determining EPs:

= hint → 2 s = (n + 1)π + (−1)n Q

Q

2

∣∣∣∣∣∣
crit
≡ ε(tcrit) = π − Zcrit

2tcrit
,

sin [2 ε(t)] =
t sinh 2t

π − ε(t)
,

ε(lower)(t) = π/4 and ε(upper)(t) = 0.
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Newton’s method:

∂tε(tcrit) =
Zcrit

2t2crit
,

∂tε(t) =
sinh 2t + 2t cosh 2t

2 [π − ε(t)] cos 2ε(t)− sin 2ε(t)
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a sample result:

→ tcrit ∈ (0.839393459, 0.839393461),

→ scrit ∈ (2.665799044, 2.665799069),

→ Ecrit ∈ (6.401903165, 6.401903294).
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.
iteration Z

(lower)
crit Z

(upper)
crit

0 4.30 4.66

2 4.461 4.486

4 4.4743 4.4760

6 4.47524 4.47536

8 4.4753038 4.475312

10 4.47530826 4.47530882

12 4.47530856 4.47530861

69



(iv) formulae in weakly non-Hermitian regime:

s = sn =
(n + 1)π

2
+ τ

Qn

2
, τ = (−1)n

→ iterate:

the first small quantity % ≡ 1
L = 1

(n+1)π

the second one α =
2 Zeff (σ)

L or β = α%
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(v) at intermediate non-Hermiticities:

→ a “generalized continued fraction”

Q = arcsin


2t

%

1 + τ Q %
sinh 2t


 , 2t =

α

1 + τ Q %
.

→ arcsin(x) = x + 1
6x

3 + 3
40x

5 + . . .

Q = Q(α, β) = αβ Ω(α, β),

→ Ω(α, β) = 1 + c10 α2 + c01 β2+

+c20 α4 + c11 α2β2 + c02 β4 +O(α6)

71



→ equation re-arranged:

[1 + τ β2Ω(α, β)] arcsinh(Λ) = α

Λ = [1 + τ β2Ω(α, β)]2 1
β sin[αβ Ω(α, β)]
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(vi) formulae for energies:

→ leading order relation

0 =
(
−1

6 + c10 + c01%
2 + 3τ%2

)
α3 + . . . .

determines the first two coefficients,

c10 = 1
6, c01 = −3τ ,
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the next-order O
(
α5

)
gives

c20 = 1
120, c11 = 1−8τ

6 , c02 = 15

and leads to our final 1 + O
(
α4

)
formula

Qn =
4 Z2

eff

(n + 1)3π3
+

+
8 Z4

eff

3 (n + 1)5π5


1 +

18 (−1)n+1

(n + 1)2π2


 .

74



.

Section III. B. There ∃ a semi-tridiagonalization

of 2J + 1 coupled square wells
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At any K, let’s use R−1 = R†, S = R2

R =




0 . . . 0 0 P

P 0 . . . 0 0

0 P 0 . . . 0

... . . . . . . . . . ...

0 . . . 0 P 0
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in FIVE channels, all choices of R lead to the same

Z(interaction) =




Z X D D X

X Z X D D

D X Z X D

D D X Z X

X D D X Z
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which is “next to tridiagonal” at D = 0,

Z(interaction) =




Z X X

X Z X

X Z X

X Z X

X X Z




.
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For 7 channels, similarly, the allowed matrix of couplings

Z(interaction) =




Z X Y D D Y X

X Z X Y D D Y

Y X Z X Y D D

D Y X Z X Y D

D D Y X Z X Y

Y D D Y X Z X

X Y D D Y X Z
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becomes “almost tridiagonal” at Y = D = 0:

Z(interaction) =




Z X X

X Z X

X Z X

X Z X

X Z X

X Z X

X X Z




.
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COUPLED-CHANNEL CHAINS: SUMMARY

♥ an innovation of the concept of the chain model

♦ the solvability extended to the large “spins” K = 2J + 1

♠ not so nice at even K = 2J (why? - an open question)

♣ no free parameters: ∂Ω(EP ) = piecewise linear
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.

Chapter IV.

SEPARABLY ANHARMONIC OSCILLATORS

AND THEIR EXCEPTIONAL POINTS

82



THE MENU

(A) COUPLED HARMONIC-OSCILLATOR LEVELS

[N < ∞, an auxiliary upside-down symmetry]

(B) FULL, MAXIMAL CONFLUENCE OF EPs

[the results of symbolic manipulations]

(C) THE PATTERN OF DECONFLUENCE

[the shape of ∂Ω(N), strong-coupling regime]
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.

Section IV. A. The family of models
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The separable AHO bound-state problem with

H(int) = i g ( | 0〉 〈1 | + | 1〉 〈0 |)

is equivalent to the above-mentioned matrix model



−1 g

−g 1







φ

χ




= E




φ

χ




M. Znojil and H. B. Geyer (quant-ph/0607104),

Construction of a unique metric

in quasi-Hermitian quantum mechanics.

Phys. Lett. B 640 (2006) 52 - 56
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For the same toy problem

H(2)




φ

χ




= E




φ

χ




, H(2) =




−1 a

−a 1




∃ a straightforward generalization (PTO):
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♥ the chain-model family ♥

H(N) =




1−N a 0 0 . . . 0

−a 3−N b 0 . . . 0

0 −b 5−N . . . . . . ...

0 0 . . . . . . b 0

... ... . . . −b N − 3 a

0 0 . . . 0 −a N − 1




.
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♥ sample: the four by four secular equation

det




3− E b 0 0

− b 1− E a 0

0 −a −1− E b

0 0 −b −3− E




= 0

with a = ±√A, b = ±√B gives E = ±√s.

This facilitates the study of EPs, e.g., via the
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brute-force numerical determination of ∂Ω(4):

0

4 0

1

2

3

2

4

6

8

s

B

A

Figure 9: The least stable energy pair E± = ±
√

s(A,B)
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.

Section IV. B. A maximal confluence of EPs
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Figure 9 indicates that the EP shape ∂Ω(4) for

H(4) =




3− E b 0 0

− b 1− E a 0

0 −a −1− E b

0 0 −b −3− E




is sharply spiked near a(EEP )
max ≈ 2 and b(EEP )

max ≈ √
3.

We intend to demonstrate that this feature is generic.
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The N = 4 EEP construction using secular equation

s2 +
(
−10 + 2 b2 + a2

)
s + 9 + 6 b2 − 9 a2 + b4 = 0

compared with s2 = 0 at an extreme EP (EEP).

Gröbner-solvable two conditions:

A + 2 B = 10, (3 + B)2 = 9 A

spurious solution: A = 64, B = −27,

the acceptable pair is unique: A(EEP ) = 4, B(EEP ) = 3.
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EEP construction at any other N : the method:

(a) split the models H(N) in two series:

with N = 2K and with N = 2J + 1

(b) construct explicit Gröbner EEP solutions

(at the first few N)

(c) extrapolate to all N

(and verify at the next few N).
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♦ ♠ ♦ the result: ♦ ♠ ♦

a re-parametrization of the couplings:

a2 = G
(N)
1 (1− α) , b2 = G

(N)
2 (1− β) , . . . ,

G
(N)
k = k (N − k) .

with the innovated Greek-letter parameters ∈ (0, 1).
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♣ sampling the proof: N = 8:

(1) consider secular equation

s4 + P3 s3 + P2 s2 + P1 s + P0 = 0

=⇒ Ω(8)(A,B,C, D) circumscribed by the simplex

A + 2 B + 2 C + 2 D = 84 .
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(2) take quadratic P2, cubic P1 and quartic P0 containing 13,

19 and 20 individual terms, respectively, reduce, e.g.

P2 = 1974 + (B + C + D)2 + 2 AD + 2 BD + 2 AC+

+50 D − (83 A + 142 B + 70 C)

& Gröbner-solve the EEP set of nonlinear equations

P2(A,B, C, D) = 0, P1(A,B, C, D) = 0, P0(A,B,C,D) = 0
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(3) find and factorize the resulting polynomial

314432 D17 − 5932158016 D16 + 4574211144896 D15+

+3133529909492864 D14 + 917318495163561932 D13 + . . .

. . . + 235326754101824439936800228806905073 D2−

−453762279414621179815552897029039797 D+

+153712881941946532798614648361265167 = 0
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(4) demonstrate that 16 roots are spurious:

(i) easy for all the complex roots;

(ii) easy for the three real but manifestly spurious negative roots

D = −203.9147095,−156.6667001,−55.49992441.

(iii) most complicated for the four real and positive roots

D = 0.4192854385, 5.354156128, 1354.675195 and 18028.16789.

In the latter case, for example, one finds the spurious negative value for

Υ2 × A = (a polynomial in D of 16th degree).

No chance without computers: the number of digits in Υ2 exceeds one hundred.
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(5) conclude that the remaining closed solution

A(EEP ) = 16 , B(EEP ) = 15 , C(EEP ) = 12 , D(EEP ) = 7

is unique.

QED.
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Summary of the merits of the model:

• provides all types of the confluence of EPs

• precisely the necessary number of parameters.

More details:

M. Znojil (math-ph/0703070),

Maximal couplings in PT-symmetric chain-models

with the real spectrum of energies.

J. Phys. A: Math. Theor. 40 (2007) 4863 - 4875
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.

Section IV. C.

The strong-coupling mechanism of the split

of the EPs near EEPs

101



Let’s recollect the smoothness of the surface s(A,B) = E2,

 

Figure 10: Second sheet of s(A,B) (≤ 14) added to Fig. 9.
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reparametrize the matrix elements of H(4) accordingly,




−3
√

3
√

1− β 0 0

−√3
√

1− β −1 2
√

1− α 0

0 −2
√

1− α 1
√

3
√

1− β

0 0 −√3
√

1− β 3
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and reparametrize also its QH domain Ω(4),

β ≥ βminimal =
9 α− α2

9 + 3 α
, α ∈ (0, 1)

α ≥ αminimal = β − β2

4
, β ∈ (0, 1)

β = t + t2 B(t) , α = t + t2 A(t)

M. Znojil, Conditional observability,

Phys. Lett. B, to appear (arXiv:0704.3812v1 [hep-th] 28 Apr 2007)

104



♦ beyond the EEP we can get a “big bang” phenomenon,

-4

-2

0

2

4

-0.2 0 0.2 0.4 0.6 0.8 1

E

t

Figure 11: The t−dependence of the energy levels at A = B = 1.

Note that α = β = 1 at the Hermiticity boundary

tHerm. = (
√

5− 1)/2 ≈ 0.618033989.
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♦ ♦ at A = 2, B = 1 we get a non-EEP pattern,

-2

0

2

0.3 0.4 0.5 0.6 0.7

E

t

Figure 12: Two “simultaneous small bangs” at an EP value t(EP ) > 0.

Note that the α(t) = 1 line (i.e., the end of PT-symmetry)

comes earlier than β(t) = 1 (i.e., the Hermiticity boundary).
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♦ ♦ ♦ at A = 1, B = 1.5 we have

-2

0

2

0 0.2 0.4 0.6

E

t

Figure 13: Quasi-Hermiticity established at t(EP ) > 0.2.
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subconclusions: inside Ω,

∃ a fine-tuned balance between α(t) and β(t),

∃ all the possible patterns of mergers between levels.

conjecture:

both properties are, mutatis mutandis, valid at all N
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♥ test at the six by six H(6),

g1 = c =
√
5 (1− γ) , g2 = b = 2

√
2 (1− β) ,

g3 = a = 3
√

1− α

with

α = t + t2 + A t3 , β = t + t2 + B t3 , γ = t + t2 + C t3 .
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♦ the “big bang” spectrum beyond the EEP again,

-3

-2

-1
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1
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Re E

t

Figure 14: Energy levels at A = B = C = 1.
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♦ ♦ the choice of A = 1, B = 2, C = 1 gives

-4
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0
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4

0.35 0.4 0.45 0.5 0.55 0.6

Re E

t

Figure 15: Real parts of the energies, “central” t(EP ) > 0.5.
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♦ ♦ ♦ at A = 3, B = 5, C = 1 one gets
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t

Figure 16: Quasi-Hermiticity established at the ground state.
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conclusions: conjecture confirmed at N = 6:

∃ a fine-tuned balance between α, β and γ

∃ all the possible merging patterns again.

conjecture: at any N = 2J (+1) one should parametrize

gn =
√

n (N − n) (1− ξn) , ξn = t + t2 + . . . + tJ−1 + Gnt
J ,

n = 1, 2, . . . , J .
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SUMMARY OF THE MODEL:

IT IS

friendly: maximal (EEP) couplings = integers,

sufficient: all the EP-merging patterns are encountered

representative: its symmetry is “maximal”

necessary: couldn’t manage with less free parameters
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Chapter V.

IN PLACE OF AN OVERALL SUMMARY
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FOUR KEY MESSAGES
to take home:

(α) DISCRETIZATIONS REVIEWED

(main merit: the variability of N)

(β) CHAIN-MODELS PROMOTED

(facilitated treatment, due to tridiagonality)

(γ) BRUTE-FORCE CALCULATIONS REPORTED

(an insight in EPs, based on symbolic manipulations)

(δ) EXTRAPOLATIONS PERFORMED/RECOMMENDED

(EP systematics)
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END OF THE STORY
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appendices
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A BRIEF INTRODUCTION IN

QUASI-HERMITIAN QUANTUM MECHANICS

(1) Two Schroedinger equations in place of one,

H|n〉 = En|n〉 and 〈〈n|H = En〈〈n|.

(2) Quasi-Hermiticity in place of Hermiticity,

H† = Θ H Θ−1, I 6= Θ = Θ† > 0.
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(3) A “‘generalized Dirac” notation,

H =
∑
n
|n〉 En

〈〈n|n〉 〈〈n|

(4) The multiparametric “choice of physics”,

Θ =
∑
n
|n〉〉 θn 〈〈n| , θn > 0.
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Illustration:

construction of the metric Θ for a 2 × 2 Hamiltonian,

H =




−T B

−B T




, Θ =




a b

b d




ΘH = HTΘ =⇒ 2bT = −B(a + d)

E ∈ IR ⇐⇒ |T | ≥ |B|, B = T sin α
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ambiguity (the whole interval of a free parameter):

setting T = 1 and a + d = 2Z > 0 we have

H =




−1 sin α

−sin α 1




, Θ/Z =




1 + ξ sin α

sin α 1− ξ




positivity θ1,2/Z = 1±
√
ξ2 + sin2 α > 0 means 1 >

√
ξ2 + sin2 α

solutions Θ=Θ(ξ) are numbered by 0 < ξ < cos α.
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interpretation:

In 2D with biorthogonal “brabraket” basis,

〈〈n|H = 〈〈n|En, H |n〉 = En |n〉

ambiguity is compatible with the universal formula

Θ = Σ |n〉〉 sn 〈〈n| , sk > 0 .

123


