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Chapter I. INTRODUCTION



EXCEPTIONAL POINTS?

definition 1 (the most elementary one):

The points of the loss of the reality
of the least stable pair

of the bound-state energies of H



O CHARACTERISTIC ODE MODEL:

see £ = k? in M. Znojil, PT-symmetric square well,

Phys. Lett. A 285 (2001) 7-10:
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Figure 1: The least stable square-well energies are the lowest ones



¢ AN EVEN MORE ELEMENTARY
SCHEMATIC MATRIX MODEL:

—1 b || ¢ ¢
=F

—b 1 X X

E=F,=+1-0b2



EXCEPTIONAL POINTS?
definition 2 (“in physics”):

certain points where “something is happening”

or, often, where “something goes wrong”;

a typical “physical” EP: the a = 0 trigger

of the “fall on the center” in V(r) ~ %



& A SAMPLE OF EPs IN REAL LIFE

catastrophes in strong fields (Dirac equation: Greiner ’68),
complex EPs in perturbation theory (BW '69: /... for AHOs),
in magnetohydrodynamics (Giinther et al, this conference),
in nuclear physics: Scholtz et al, Heiss et al, Rotter et al,
in supersymmetric models: many authors,
in relativistic models: AM 04 etc

etc.



© MODELS WITH EPs LOOK INNOVATIVE

physics can be unusual (non-local, superluminal, dissipative, ...)

one could circumvent no-go theorems (e.g., in supersymmetry)

relativistic (e.g., Proca) equations appear in a new perspective

MHD models = “physical” inside as well as outside (2

last but, better, first, field theory



math. guide: EP in HO at o — 0 and all n:
Ef=4n+2+2a merges with E. =4n+ 2 — 2a,

10

Figure 2: Spectrum of the PT-symmetric harmonic oscillator



& Unfortunately, HO is NOT GENERIC:

all the energies = suddenly complex iff o < 0 (degeneracy)
“isolated” degenerate EPs d periodically in «
all the energies = linear in «

LHO obtained at a = § (equidistance, SUSY etc)

M. Znojil, PT-symmetric harmonic oscillators,

Phys. Lett. A 259 (1999) 220 - 223).
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EXCEPTIONAL POINTS?

definition 3 (a la T. Kato):

They form a boundary 02
of the domain Q = Q(H)
of the quasi-Hermiticity of H # HT
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an immediate task: the determination of Of)

— CHALLENGE TO PHYSICS

EPs are rather rare in Hermitian worlds with H = H' (Heiss et al)

EP means a singularity in the metric © in quasi-Hermitian world
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an immediate task: the determination of Of)

— CHALLENGE TO MATHEMATICS

® hard life beyond general four-by-four matrices H

M. Znojil, Determination of the domain of the admissible
matrix elements in the four-dimensional PT-symmetric
anharmonic model,

Phys. Lett. A, in print, online, quant-ph/0703168 (PTO).
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Figure 3: Graphical determination of the three-parametric domain Q® = Q®(a, b, ¢)

at a fixed ¢ = /8/5, with the four “double” EPs x1, x5, 3, z4.
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AN AMBITION OF THIS TALK

SIMPLIFY SOME CURRENT HAMILTONIANS H # H!
[say, H = —/A + V(Z), via a discretization, chapter II]

REVIEW BRIEFLY THE GAINS
(results on matrices H = H* = © 1 HT O inside Q, ch. IILIV)
while trying to

formulate some generic conjectures on 0}

(method: symbolic manipulations plus extrapolations)
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Chapter 1I. DISCRETIZATIONS
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A MENU

(1) RUNGE KUTTA QM
[any discrete one-dimensional H = p? + V(x) # H']

(2) THE OTHER LATTICES OF COORDINATES

[2D here, semi-discrete, coupled channels, square wells]

(3) BIORTHOGONAL BASES

[mainly variational, separably anharmonic oscillators]

17



(1) RUNGE KUTTA QM IN 1D

coordinates: xp =x1_1+h=—1+ kh,

h:N, CUO:—l, ]{:1,2,...,]\[
kinetic energy:
_wll(x) o~ _w(fﬁkﬂ) B 2¢(CL’]€) + ¢<$k_1)

h?

boundary conditions: ¥ (xg) = ¥(zn) =0
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leads to the Weigert’s matrix square well model

24 11Z -1 0 a a
1

—1 2 —1 ¥ :4E 7y

0 —12-41Z || 5 Bo

& its N > 4 generalizations with tridiagonal H,

(PTO)
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1 ¥&-—F
~1
1 i¢—F| -1
1 |-F| -1
1| -i¢—F
~1

20




3 AN EQUIVALENT REAL FORMULATION OF SE:

—F £ -1 0 ag
¢ —F| 0 -1 bo
-1 0 |-F —=¢ aq
0O -1} & —F b1
1 0 =0
0 -1
-1 0 | —-F —-¢|-1 an,
o -1, ¢ —-F| 0 bn
-2 0 |-F ¥
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SOLVABLE:

—> by the matching method
— in closed complex form (Tschebyshev polynomials)

— in closed real form (matrix Tschebyshev)

M. Znojil (quant-ph/0605209),
Matching method and exact solvability of discrete
PT-symmetric square wells

J. Phys. A: Math. Gen. 39 (2006) 10247 - 10261
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MERIT: A PARALLELISM

(i) solvable differential Schrodinger equation:

B. Bagchi et al (quant-ph/0503035),

PT-symmetric supersymmetry in a solvable short-range model,

Int. J. Mod. Phys. A 21 (2006) 2173-2190

(ii) parallel solvable difference Schrodinger equations:
[N = 7 sample: PTO]

23



—1 —F -1 Yo
-1 —F -1 v | =0
-1 —F| -1 v

1 |—ie—F | | o

1
Fy=0, Fi.= 12\/8 — 28242 /44 £

F. _ responsible for EP, &.,.;; = /3/2 ~ 1.2247 (PTO)
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2
3

Figure 4: RK spectrum at N = 7, single fragile pair of E} 3

B Y I 8}
Fi*_i\/g[l 28 T st Tt +0(&)

1 1 31

Fro=4vV2 1+ -9y?— —yt— 40 8] = 1/¢.
. \f{+4y SV g O] v=1/8
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RUNGE KUTTA QM: SUMMARY

O feasible EP constructions
& a useful guidance towards N — 00
& oversimplified, tuned to 1D dynamics,

& not enough structural flexibility in OAE

—> idea: try to move to 2D:

(z,y) — (x,y,) withn=1,... K.

26



(2) COUPLED-CHANNEL QM

(K = 2) two-by-two Hamiltonian, differential in :

2
&0
H (kinetic) — ) )
0 —ip
Va(z) Wi(z)
H(mteraction) -

@ 2D Hamiltonians which are only discretized in y

27



& O—pseudo-Hermiticity:

O square-well potentials [x € (—1,0)]:
Im W, (x) = X >0,
Im Wb(l‘) =Y >0,

ImV,(z) =ImV,(x) = Z,

28



& spin-like (0 = +1) symmetry:

Ow‘l X
() = = . —>0.
Y, w Y

w 0

& solvable and physical

M. Znojil (quant-ph/0511085),
Coupled-channel version of PT-symmetric square well,

J. Phys. A: Math. Gen. 39 (2006) 441 - 455.
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H (kinetic) —

Z (interaction, K=3)

Odd;O’
2
R

(K = 3) next, three-by-three square well:

Zay) Zaz) Zas)
Z21) Zi22) Z23)

Z31) Z£32) 4(33)
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with two “strong” 6—pseudo-Hermiticities:



& an emergence of a factorized symmetry

In the “strong” case we have 7 # 6 = R in

H =RHR!.

A few observations should be made

32



observation 1
if we wish that

H =RHR™!

then

H=(u) =®" # R
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observation 2
if we wish that
H'=RHR'
then
H=(u) =®" # R

- (R"")'RHER 'R
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observation 3
if we wish that

H =RHR™!

then

A
I

(1) = (R RHR 'R

H=(H) =5 H s
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#® This means that

our H must have a factorized symmetry,

HS=8H, Ss=(R"R
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#® This means that

our H must have a factorized symmetry,
HS=8H, Ss=(R"R
and we have two possibilities:

o either S = I (ie., R = RY), pseudo-Hermiticity
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#® This means that

our H must have a factorized symmetry,
HS=8H, Ss=(R"R
and we have two possibilities:
o either S = I (ie., R = RY), pseudo-Hermiticity

e or S # I (proper “factorized symmetry”).
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{ factorized symmetry constraints (for SQWs)

In three channels we get a unique 2-parametric set

Z X X
Z(’mteraction) = | X Z X

X X 7

and define Z. sy (m) = eigenvalues of Z,

Zeff(l):Z—i—QX, Zeff(Q,g)ZZ—X.
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¢ all = solvable again, via a ‘new curve’:

t =1(s) =& Zgs(0), 0=1,2,3

[cf. M. Znojil (quant-ph/0601048),
Strengthened PT-symmetry with P # P!
Phys. Lett. A 353 (2006) 463 - 468].

new: degeneracy of levels o = 2, 3,

EPs: a boundary 09® of a triangle (PTO)
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Q(X,2) T

02 04 06 08 1 12 14 16 18 2 22 24 26

Figure 5: Triangular quasi-Hermiticity domain at K = 3

energies real for X — Z..;y < Z < Zopip — 2X,

EP vertices (0, £4.475) and (2.98, —1.49).
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COUPLED-CHANNEL QM: SUMMARY

O an innovation of the concept of symmetries
& EPs from a routine square-well solvability
& an interpretation of S # I is missing,

& not worked out at the higher spins

—> an alternative natural option:

a universal biorthogonal basis
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(3) VARIATIONAL QM

initial Schrodinger equation
say, ODE with x € (—o0, ), PT —symmetric:

2

H= —dx2+U(x)+iW(x) + HT,

43



represented in a partitioned variational basis,

Ny
| Py) :mz::O 12m) G, | P-) = ZO |2m + 1) Xm

using the P7 —symmetric normalization,

[¥) = ) —ilv).

44



having to solve two Schrodinger equations at once:

and
(n|H = E,{(n|

45



we arrive at the partitioned infinite-dimensional

S +B
H _=
-BT L

while P7 —symmetry implies that

46



recipes:  linear algebra:

H' =0HO™!, I#4£6=0">0,

with H = 5, [n) Es ((n]

and © =%, |n) t, (n|

& spectra: results, in general, numerical

47



illustration: 3 a nice extension

of the above-mentioned two-by-two toy problem to dim=3,

1 a4 d 10 0
HY=| _o 1 & |, PYP=|0_10
d —b 3+c 0 0 1
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Q  in this model

Jacobi rotation annihilates d = 0,

—1

—a

0

49

a 0
1 b
—b 34+¢




@ Q© in this model
all ¢ # —2 are easy to incorporate in the formulae, and

a two-parametric “representative Hamiltonian” results,

—2 a 0
HY =| _4 0 b
0 —b 2

20



O © Q in this model

the EP set 90®) has a “generic” shape,

0.5

Figure 6: Domain (a,b) for H = H®)

o1



with two-dimensional fixed—b subdomains QE?

J(a)

Q(b=1/2)

Q(b=0)

Figure 7: The b—dependence of the interior of Q®)(a, b)
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@ 0 © QO in this model

conclude: after a re-coupling, b=0 — b > 0,
EPs of a “decoupled system” (= 9923 (a,0) = £1),
become physical, stabilized, “reqularized”

(2
b

by having moved inside Q(

(@) = (—(b), (b))

where, e.g., 7(1/2) &~ 1.04237.
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O © © Q© Q© in this model

t € (—1,1) parametrizes the whole curve 8&2(3),

1
a:ai:i\l2(4—3t2—t3>,

1

(trick to be remembered!)
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more details:

M. Znojil (quant-ph/0701232),
A return to observability near exceptional points

i a schematic PT-symmetric model.
Phys. Lett. B 647 (2007) 225 - 230.
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VARIATIONAL QM: SUMMARY

O straightforward calculations (linear algebra)
¢ reliable (variational) background at N > 1
& too numerical in general (too many free parameters)

& analytic insight (N = 3) looks exceptional

—> remedy: choose some of the parameters in advance.
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Chapter I1I. TRIDIAGONALIZATIONS:

K coupled square wells in a chain
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THE MENU

(1) RUNGE KUTTA
[tridiagonal by itself in 1D: omitted]

(2) COUPLED CHANNELS

[surprise: 3 circular-chain semi-tridiagonalizations !]

(3) BIORTHOGONAL BASES

[main news on EPs, postponed to ch. IV]

o8



Section III. A. K > 1 parallels

to the single-channel case

29



(i) 3 formulae for wave functions:

square-well ODE with constant coefficients:

60



solvable by an ansatz

'™ sin kp(z+1), x<0,
o\™(z) =
an) sinkp(—r+1), >0
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using Z<<€m>f)(K ) as eigenvalues of
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(ii) quantized easily:

ansatz and its insertion:
kp=S8+1it =Ky, s5>0,
(m)
Z ¢ (K)
— 1= Xfirst curve [Z((:})f)(K)a 81 = %

plus matching condition in the origin:

— t= x/second cur’ue(s)

63



Yiecond curve(s): KL cotan Ky, = —Kpgcotan kg

— implicit definition:

2s sin2s + 2t sinh 2t =0

— energies:
2 2 _
E,=s —t, n=01....

= intersections (s,,t,) of two graphs (PTO)
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sample of the graphical recipe:

Figure 8: Square-well energies
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(iii) the SAME algorithm determining EPs:

= hint - 2s=(n+1)mr+(=1)"Q

Q Zcm't
7 = tcm’ — - )
2 crit 5( t) " 2tcm't

t sinh 2t

sin2e(t)] =

T —e(t)

g(lower) (t) — 7T/4 and 8(upper) (t) = 0.
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Newton’s method:

Z crit
2
2tcm’t

atg(tcm’t) -

Dre(t) = sinh 2t + 2t cosh 2t

2 [ —e(t)] cos2e(t) — sin 2e(t)

67



a sample result:
— teir € (0.839393459, 0.839393461),
— Serit € (2.665799044, 2.665799069),

— FEei € (6.401903165,6.401903294).
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iteration Zéi‘j}““ r) Zéﬁﬁp er)
0 4.30 4.66
2 4.461 4.486
4 4.4743 4.4760
6 4.47524 4.47536
8 44753038 | 4.475312
10 4.47530826 | 4.47530882
12 4.47530856 | 4.47530861

69




(iv) formulae in weakly non-Hermitian regime:

(TL + 1)7T Qn
_— n == - 77 — _1 "
S=S5 5 + T 5 T ( )
— iterate:
the first small quantity o = % = +11)7r

the second one v = QZeg(g) or = ap

70



(v) at intermediate non-Hermiticities:

— a “generalized continued fraction”

Q= arcsin_(Qt Sin}12t) , 2t

1+7Q0
— arcsin(z) =z + t2® + 22 4 ..
Q = Q(o, f) = af Qa, B),

— Qa, B) =1+ cga® + cg; 7+

+cop 4+ 11 B2 + cpo B+ O(ad)

71
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C147Qpo



— equation re-arranged:

[1+ 7 3*Q(cr, B)] arcsinh(A) = o

A= [1+4782a, 8L sinfaB a, B)
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(vi) formulae for energies:

— leading order relation

O:(—é—l—Cw—}—601Q2+37'Q2)053+....

determines the first two coefficients,

|
clo=7g, Co1= —3T,

73



the next-order O () gives

1 _1-87 _
€20 = 190> C11 = ¢ > co2 = 19

and leads to our final 1 + O (a?) formula

2
" (n+1)38
L 8Zhy () 18(=1
3(n+1)°7m° (n+1)2m2) "
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Section III. B.  There d a semi-tridiagonalization

of 2J + 1 coupled square wells

5



At any K, let’s use R"' =RI, S = R?

76




in FIVE channels, all choices of R lead to the same

Z X DD X
X Z X D D
Linteraction) = | D X Z X D
DD X Z X

X DD X Z

7



which is “next to tridiagonal” at D = 0,

Z X X
X Z X
Z (interaction) — X Z X

X Z X

X X Z

78




For 7 channels, similarly, the allowed matrix of couplings

Z(mteractz'on) =\ DY X Z XY D

79



becomes “almost tridiagonal” at Y = D = 0:

.4 X
X 7 X

X 7 X
Z(interaction) = X Z X
X 7 X

X Z X

X X Z

30




COUPLED-CHANNEL CHAINS: SUMMARY

O an innovation of the concept of the chain model
> the solvability extended to the large “spins” K =2J + 1
@& 1ot so nice at even K = 2J (why? - an open question)

& 10 free parameters: 9QFF) = piecewise linear

81



Chapter IV.
SEPARABLY ANHARMONIC OSCILLATORS

AND THEIR EXCEPTIONAL POINTS

82



THE MENU

(A) COUPLED HARMONIC-OSCILLATOR LEVELS

[N < 00, an auxiliary upside-down symmetry]

(B) FULL, MAXIMAL CONFLUENCE OF EPs

[the results of symbolic manipulations]

(C) THE PATTERN OF DECONFLUENCE
the shape of 9QW) strong-coupling regime]

33



Section IV. A. The family of models

84



The separable AHO bound-state problem with

Hry =19 (10) (1| + [1) (0])
is equivalent to the above-mentioned matrix model
—lLg||o ¢
=F
—g 1) X X

M. Znojil and H. B. Geyer (quant-ph/0607104),

Construction of a unique metric

i quast-Hermatian quantum mechanics.
Phys. Lett. B 640 (2006) 52 - 56

85



For the same toy problem

1 a straightforward generalization (PTO):

36



the

chain-model family O

87




@ sample: the four by four secular equation

3—F b 0 0
—b 1—F a 0
det =0
0 —a —-1—F b
0 0 —b —3—F

with a = £/ A, b= £v/B gives E = +./s.

This facilitates the study of EPs, e.g., via the

38



brute-force numerical determination of 0QW:

Figure 9: The least stable energy pair E. = +4/s(A, B)
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Section IV. B. A mazimal confluence of EPs

90



Figure 9 indicates that the EP shape 9Q® for

3—F b 0 0

—b 1—F a 0
H® —

0 —a —-1—F b

0 0 —-b —-3—F

is sharply spiked near a!FEP) a~ 2 and bEEP) ~ /3.

max mazx ~

We intend to demonstrate that this feature is generic.
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The N = 4 EEP construction using secular equation
S+ (10420 +a%) s+ 9466 — 9a> + b =0

compared with s> = 0 at an extreme EP (EEP).

Grobner-solvable two conditions:
A+2B =10, (3+B)3*=9A

spurious solution: A =64, B = —27,

the acceptable pair is unique: AFFP) =4 BEEP) — 3,

92



EEP construction at any other /N: the method:

(a) split the models H™) in two series:
with N = 2K and with N =2J +1

(b) construct explicit Grobner EEP solutions
(at the first few N)

(c) extrapolate to all N

(and verify at the next few N ).

93



> & < theresult: & & O

a re-parametrization of the couplings:

=GV (1—a),  P=G(1-p),

with the innovated Greek-letter parameters € (0, 1).
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& sampling the proof: N =8:

(1) consider secular equation

sS'+ P+ P+ P s+P=0

— Q®)(A, B, C, D) circumscribed by the simplex

A+2B+2C+2D =84.

95



(2) take quadratic Py, cubic P; and quartic Py containing 13,

19 and 20 individual terms, respectively, reduce, c.g.

P, =1974+ (B+C+ D)* +2AD +2BD + 2 AC+
+50D — (83A+142B+70C)

& Grobner-solve the EEP set of nonlinear equations

Py(A,B,C,D) =0, Pi(A,B,C,D)=0, Py(A,B,C,D)=0

96



(3) find and factorize the resulting polynomial

314432 DT — 5932158016 D'® + 4574211144896 D+

+3133529909492864 D™ + 917318495163561932 D3 + . ..
... 4 235326754101824439936800228806905073 D?—
—453762279414621179815552897029039797 D+

+153712881941946532798614648361265167 = 0
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(4) demonstrate that 16 roots are spurious:

(i) easy for all the complex roots;
(ii) easy for the three real but manifestly spurious negative roots
D = —203.9147095, —156.6667001, —55.49992441.
(iii) most complicated for the four real and positive roots
D = 0.4192854385, 5.354156128, 1354.675195 and 18028.16789.
In the latter case, for example, one finds the spurious negative value for
T? x A = (a polynomial in D of 16th degree).

No chance without computers: the number of digits in T? exceeds one hundred.

98



(5) conclude that the remaining closed solution
AWFEP) _ 16 BPEP) _ 15 ((FEP) _ 19 p(FEEP) _ 7

1s unique.

QED.
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Summary of the merits of the model:

e provides all types of the confluence of EPs

e precisely the necessary number of parameters.

More details:

M. Znojil (math-ph/0703070),
Mazximal couplings in PT-symmelric chain-models

with the real spectrum of energies.
J. Phys. A: Math. Theor. 40 (2007) 4863 - 4875
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Section IV. C.
The strong-coupling mechanism of the split

of the EPs near EEPs

101



Let’s recollect the smoothness of the surface s(A, B) = E?,

Figure 10: Second sheet of s(A, B) (< 14) added to Fig. 9.
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reparametrize the matrix elements of H® accordingly,

-3 V3vV1I=7 0 0
~V3JI=F8 -1 2V —a 0
0 21—« 1 V3V1I=7

103




and reparametrize also its QH domain Q(4>,

9o — a?

2 Dminima — A o € 071
6 =>p0 =934 a e (0,1)
2
az@minimal:ﬁ_4a 56(071)

B=t+t*B(t), a =1+t At)

M. Znojil, Conditional observability,
Phys. Lett. B, to appear (arXiv:0704.3812v1 [hep-th] 28 Apr 2007)
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¢ beyond the EEP we can get a “big bang” phenomenon,

t0.2 [} 0.2 04 0. 0’8 1 t

Figure 11: The t—dependence of the energy levels at A = B = 1.

Note that o = 3 = 1 at the Hermiticity boundary

tierm. = (V5 —1)/2 ~ 0.618033989.
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& O at A=2, B=1 we get a non-EEP pattern,

0.3 0.4 0.5 0.6 0.7

Figure 12: Two “simultaneous small bangs” at an EP value tgp) > 0.
Note that the a(t) =1 line (i.e., the end of PT-symmetry)

comes earlier than 5(t) =1 (i.e., the Hermiticity boundary).
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%

$ at A=1, B =1.5 we have

Figure 13: Quasi-Hermiticity established at t(gpy > 0.2.
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subconclusions: inside €2,

1 a fine-tuned balance between a(t) and 3(t),

4 all the possible patterns of mergers between levels.

conjecture:

both properties are, mutatis mutandis, valid at all N
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Q  test at the six by six H),

gi=c=\y5(1—=7), gp=0b=22(1-70),
gg=a=3vV1—«

with

a=t+t°+At>, [B=t+t?+Bt°, ~y=t+t*4+Ct.
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¢ the “big bang” spectrum beyond the EEP again,

Figure 14: Energy levels at A= B =C = 1.

110



& < thechoiceof A=1, B=2, C =1 gives

Figure 15: Real parts of the energies, “central” ¢(gpy > 0.5.
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& O O at A=3, B=5,C =1 one gets

Figure 16: Quasi-Hermiticity established at the ground state.
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conclusions: conjecture confirmed at N = 6:

4 a fine-tuned balance between «, § and v

4 all the possible merging patterns again.

conjecture: at any N = 2J (+1) one should parametrize

gn=n(N —n)(1—¢,), En=t+12+. .t/ Gt

n=12...,J.
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SUMMARY OF THE MODEL:

IT IS

friendly: maximal (EEP) couplings = integers,
sufficient: all the EP-merging patterns are encountered
representative: its symmetry is “maximal”

necessary: couldn’t manage with less free parameters
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Chapter V.

IN PLACE OF AN OVERALL SUMMARY
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FOUR KEY MESSAGES
to take home:

() DISCRETIZATIONS REVIEWED

(main merit: the variability of V)

(8) CHAIN-MODELS PROMOTED

(facilitated treatment, due to tridiagonality)

(v) BRUTE-FORCE CALCULATIONS REPORTED

(an insight in EPs, based on symbolic manipulations)

() EXTRAPOLATIONS PERFORMED/RECOMMENDED
(EP systematics)
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END OF THE STORY
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appendices
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A BRIEF INTRODUCTION IN

QUASI-HERMITIAN QUANTUM MECHANICS

(1) Two Schroedinger equations in place of one,

H|n) = E,|n) and ((n|H = E,({(n|.
(2) Quasi-Hermiticity in place of Hermiticity,

Hi =0HO™, I4£0=0">0.
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(3) A ““generalized Dirac” notation,
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Illustration:

construction of the metric © for a 2 x 2 Hamiltonian,

—B T b d

OH = H'© = 2bT = —B(a + d)

EFEe R~ |T|>|B|, B=Tsna
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ambiguity (the whole interval of a free parameter):

setting I' =1 and a + d = 2Z > 0 we have

—1 sina 14+ ¢ sina
, 0/Z =

—sina 1 sina 1 —¢&

H —

positivity 0 5/7 = 11\/@ + sin®a > O means 1 > \/52 + sin” o

solutions ©=06(&) are numbered by 0 < £ < cos a.
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interpretation:

In 2D with biorthogonal “brabraket” basis,

((n|H = {(n| En,  Hln) = E,n)

ambiguity is compatible with the universal formula

©=3|n))s,{{n|, sz>0.
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