Palma di Mallorca (seminar: Wednesday, May 30, 2007, 14.30)

Can we get observable, real spectra from non-Hermitian Hamiltonians?

or what should we all know about pseudo-Hermitian models in quantum mechanics

Miloslav Znojil, Nuclear Physics Institute, 250 68 Řež, Czech Republic email: znojil@ujf.cas.cz

A. MOTIVATION

- Let's ask: Do there exist non-Hermitian operators with real spectra?
 - The answer "Of course they do!" is easy.

a non-Hermitian spin-model illustrative prelude:

$$\begin{pmatrix} s & b \\ -b & l \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = E \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$

shift: s = -1, l = 1,

get: $E = E_{\pm} = \sqrt{1 - b^2}$,

set: $b = \cos \alpha = \sqrt{1 - E^2}$

- But let's further ask: do they also find applications in quantum (and not only in quantum) physics?
 - the answer "Of course they do!" survives

proof: the famous Klein-Gordon equation

$$(i \,\partial_t)^2 \,\Psi^{(KG)}(x,t) = \hat{H}^{(KG)} \,\Psi^{(KG)}(x,t)$$

with abbreviation

$$\varphi_1^{(PB)}(x,t) = i \,\partial_t \,\Psi^{(KG)}(x,t), \quad \varphi_2^{(PB)}(x,t) = \Psi^{(KG)}(x,t)$$

has the manifestly non-Hermitian Hamiltonian form,

$$i\,\partial_t \left(\begin{array}{c} \varphi_1^{(PB)}(x,t) \\ \varphi_2^{(PB)}(x,t) \end{array} \right) = \hat{h}^{(PB)} \left(\begin{array}{c} \varphi_1^{(PB)}(x,t) \\ \varphi_2^{(PB)}(x,t) \end{array} \right), \qquad \hat{h}^{(PB)} = \left(\begin{array}{c} 0 & \hat{H}^{(KG)} \\ 1 & 0 \end{array} \right).$$

Summarizing: non-Hermitian operators $H \neq H^{\dagger}$

- can generate real spectra,
- do find applications in physics.

OK - today, I'll detail these two answers a bit.

A. I. Some more physics: Quantization under relativistic kinematics

- problems of physics with Klein-Gordon equation (indefinite norm)
- mathematics of Klein-Gordon equation (pseudo-Hermitian Hamiltonians)
- parallels with the Wheeler-De-Witt equation (cosmology)
- problems of physics with spin (unbounded Dirac's spectrum)
- strongly attractive Coulomb field (emergence of new degrees of freedom)
- problems in field theory (Gupta and Bleuler, Lee and Yang, Nishijima)

A. II. Even more physics: Quantization under nonrelativistic kinematics

- mathematical puzzles of perturbation theory (complex couplings)
- Lipkin-Meshkov-Glick made non-Hermitian (Scholtz, Geyer and Hahne '92)
- quasi-Hermitian IBM models in nuclear physics (Dyson's bosonic mapping)
- particle(s) in a complex potential (indefiniteness of the norm, new SUSY)
- problems with coupled channels (unbounded spectrum, new degrees of freedom)
- beyond quantum theory (α^2 dynamos in MHD)

B. CONTEXT

B. I.

Models with instabilities

- \bullet strong relativistic external fields (an abrupt complexification of E)
- too attractive central force (fall on the center, complexification of E)
- Jevicki-Rodrigues' limitations of SUSY (impenetrable singularities)
- Das-Pernice's' limitations of SUSY (imperfect regularization)
- 2D oscillators near cranking regime $[\omega_x = 3, \, \omega_x = 2, \, \Omega \in (2,3)]$

(W. D. Heiss and R. Nazmitdinov, 2007)

B. II.

Mathematics of the (in)stability

- (Dirac's Coulomb, etc): **antiparticles** or, in general, **physics** enters the scene
- (Bender-Turbiner '93): analytic continuations enter the scene (QES models)
- (Buslaev-Grecchi '93): \mathcal{PT} -symmetry enters the scene $(V(x)=-x^4)$
- (Bender-Boettcher '98): \mathcal{PT} -symmetry re-enters the scene $(V(x) = x^2(ix)^{\varepsilon})$
- (Znojil '02, Mostafazadeh '02): pseudo-Hermiticity enters the scene
- (Znojil '06): the concept of \mathcal{PT} -symmetric toboggans enters the scene

C. MATHEMATICS

C. I..

Analytic continuation?

- (Bender and Wu '69): complexified **couplings**, $E_n(\lambda) =$ analytic function
- (Bender and Turbiner '93): $V(x) = a^2x^6 3ax^2 = \text{four eigenvalue problems}$
- (Cannata et al '98): exponential V(x)= infinitely many eigenvalue problems
- (change of variables): spiked V(x)= infinitely many eigenvalue problems M. Znojil, Phys. Lett. A 342 (2005) 36 47

C. II.

$\mathcal{P}T$ -symmetry?

- (Buslaev and Grecchi 1993): symmetry of $H=p^2+\omega^2x^2-x^4$
- (Bender and Boettcher 1998): symmetry of $H=p^2-(\mathrm{i} x)^{2+\varepsilon}$ with $\varepsilon\geq 0$
- (Mostafazadeh 2002): special case of \mathcal{P} -pseudo-Hermiticity
- (Znojil 2007): special case of quantum toboggans
 - J. Phys. A: Math. Gen. 39 (2006) 13325 13336

D. PSEUDOHERMITIAN QUANTUM MECHANICS

the spin-model prelude once more:

$$\begin{pmatrix} -1 & b \\ -b & 1 \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = E \begin{pmatrix} \phi \\ \chi \end{pmatrix}, \qquad \mathcal{P} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- \heartsuit the pseudo-Hermiticity for pedestrians: $H^{\dagger} = \mathcal{P} H \mathcal{P}^{-1}$
- \clubsuit a restored Hermiticity for pedestrians: $\ H^\dagger = \Theta \, H \, \Theta^{-1}$

ansatz for the "metric":
$$\Theta = \begin{pmatrix} a & b \\ b & d \end{pmatrix} \Longrightarrow 2bT = -B(a+d)$$

positivity of Θ : eigenvalues $\theta_{1,2} > 0 \iff b \neq 0 \neq a + d = 2Z$

reparametrization: $a = Z(1 + \xi), d = Z(1 - \xi),$

family of acceptable metrics: $1 > \sqrt{\xi^2 + \sin^2 \alpha}$, $0 \le \xi < \cos \alpha$

the most popular choice: $\xi = 0$

D. I.

Advanced definitions of pseudo-Hermiticity

- (textbooks): symmetry of H such that $H^{\dagger} = \mathcal{P} H \mathcal{P}^{-1}$, with $\mathcal{P} = \mathcal{P}^{\dagger}$
- \bullet (Mostafazadeh 2002): ${\mathcal P}$ need not be known
- (Solombrino 2002/ Znojil 2006): P need not be self-adjoint
 (⇒ the "weak"/"strengthened" pseudo-Hermiticity)
 (M.Z., Phys. Lett. A 353 (2006) 463 468 and
 J. Phys. A: Math. Gen. 39 (2006) 4047 4061)

D. II.

Typical example: ODE with $x \in (-\infty, \infty)$

$$H^{(BB)}(\nu) = -\frac{d^2}{dx^2} + g(x) x^2, \qquad g(x) = \omega^2 + (ix)^{\nu}, \qquad \nu \ge 0$$

Hermiticity replaced by PT-symmetry:

$$H = -\frac{d^2}{dx^2} + U(x) + i W(x) \neq H^{\dagger}, \quad U(x) = U(-x), \quad W(x) = -W(-x),$$

E. ARE WE STILL INSIDE QUANTUM MECHANICS? YES, WE ARE!

E. I.

Ad hoc redefinition of the inner product

ullet discovery (nuclear physics)

- rediscoveries: Znojil 2002, Mostafazadeh 2002, Bender et al 2002
- series of dedicated conferences:

$$(\Longrightarrow \mathrm{http://gemma.ujf.cas.cz/^{\tilde{}}\ znojil})$$

- various symbols for the "metric": $T, \mathcal{PQ}, \eta_+, \mathcal{CP}, \exp Q, \Theta$
- the most recent review: C. Bender, hep-th/0703096.

E. II. Quantum Mechanics on one page: Reality of spectra: condition sine qua non

- quintessence: quasi-Hermiticity $H^{\dagger} = \Theta H \Theta^{-1}, \, \Theta > 0$
- explicit formulae:

$$H = \sum_{n} |n\rangle \frac{E_n}{\langle \langle n|n\rangle} \langle \langle n| \text{ and } \Theta = \sum_{n} |n\rangle \langle n|$$

• two definitions needed:

$$H|n\rangle = E_n|n\rangle$$
 and $\langle\langle n|H = E_n\langle\langle n|$

Summary: All these results are freshly published:

Miloslav Znojil,

Maximal couplings in PT-symmetric chain-models with the real spectrum of energies

J. Phys. A: Math. Theor. 40 (2007) 4863 - 4875.
(math-ph/0703070).