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A.
MOTIVATION



e Let’s ask: Do there exist non-Hermitian operators with

real spectra?

— The answer “Of course they do!” is easy.



a non-Hermitian spin-model illustrative prelude:
s b ¢ ¢
E
shift: s=—-1,1=1,

get: E=FE, =+1—-10?
set: b =cosa =+1— E2



e But let’s further ask: do they also find applications in

quantum (and not only in quantum) physics?

— the answer “Of course they do!” survives



proof: the famous Klein-Gordon equation

(i 9,)? OED (g, 4) = HED WK (4 )
with abbreviation
o (,t) = 10, WED (1), oD (@, 1) = WEO) (2, 1)

has the manifestly non-Hermitian Hamiltonian form,

(PB) (PB) T(KQG)
t ,t 0 H

PB PB
o) (1) o) (1) 10



Summarizing: non-Hermitian operators H # H'

e can generate real spectra,

e do find applications in physics.

OK - today, I'll detail these two answers a bit.



A. I. Some more physics:

Quantization under relativistic kinematics

problems of physics with Klein-Gordon equation (indefinite norm)
mathematics of Klein-Gordon equation (pseudo-Hermitian Hamiltonians)
parallels with the Wheeler-De-Witt equation (cosmology)

problems of physics with spin (unbounded Dirac’s spectrum)

strongly attractive Coulomb field (emergence of new degrees of freedom)

problems in field theory (Gupta and Bleuler, Lee and Yang, Nishijima)



A. II. Even more physics:

Quantization under nonrelativistic kinematics

e mathematical puzzles of perturbation theory (complex couplings)

Lipkin-Meshkov-Glick made non-Hermitian (Scholtz, Geyer and Hahne '92)

e quasi-Hermitian IBM models in nuclear physics (Dyson’s bosonic mapping)

particle(s) in a complex potential (indefiniteness of the norm, new SUSY)

problems with coupled channels (unbounded spectrum, new degrees of freedom)

beyond quantum theory (a® dynamos in MHD)



B.
CONTEXT
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B. 1.
Models with instabilities

strong relativistic external fields (an abrupt complexification of F)
too attractive central force (fall on the center, complexification of E)
Jevicki-Rodrigues’ limitations of SUSY (impenetrable singularities)
Das-Pernice’s’ limitations of SUSY (imperfect regularization)

2D oscillators near cranking regime [w, = 3, w, = 2, Q € (2,3)]
(W. D. Heiss and R. Nazmitdinov, 2007)
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B. 1I.
Mathematics of the (in)stability

(Dirac’s Coulomb, etc): antiparticles or, in general, physics enters the scene

Bender-Turbiner '93): analytic continuations enter the scene (QES models)

Buslaev-Grecchi '93): P7 —symmetry enters the scene (V(z) = —2*)

(
(
(Bender-Boettcher '98): P7 —symmetry re-enters the scene (V(z) = z%(ix)*)
(Znojil '02, Mostafazadeh '02): pseudo-Hermiticity enters the scene

(

Znojil ’06): the concept of P7T —symmetric toboggans enters the scene
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C.
MATHEMATICS
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(

C. 1.

Analytic continuation?

Bender and Wu '69): complexified couplings, F, (\) = analytic function
Bender and Turbiner '93): V(z) = a?z°® — 3az? = four eigenvalue problems
Cannata et al '98): exponential V' (z) = infinitely many eigenvalue problems

change of variables): spiked V' (z) = infinitely many eigenvalue problems
M. Znojil, Phys. Lett. A 342 (2005) 36 - 47
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C. II.
PT —symmetry ?

Buslaev and Grecchi 1993): symmetry of H = p? + w?x? — 2*
Bender and Boettcher 1998): symmetry of H = p? — (iz)*™ with € > 0
Mostafazadeh 2002): special case of P—pseudo-Hermiticity

Znojil 2007): special case of quantum toboggans

J. Phys. A: Math. Gen. 39 (2006) 13325 - 13336
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D.
PSEUDOHERMITIAN QUANTUM
MECHANICS
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the spin-model prelude once more:

1 b ¢ ¢ 1 0
E

O the pseudo-Hermiticity for pedestrians: H' =P H P!

& a restored Hermiticity for pedestrians: H' =0 H 0!

a b
“metric”: © = — 20T = —B(a+d)
b d

positivity of ©: eigenvalues 012 >0 <= b#0#a+d=2Z

ansatz for the

reparametrization: a = Z(1+¢§), d = Z(1 — &),

family of acceptable metrics: 1 > /&2 +sina, 0< ¢ <cosa

the most popular choice: £ =0
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D. I

Advanced definitions of pseudo-Hermiticity

e (textbooks): symmetry of H such that H =P H P! with P = PT
o (Mostafazadeh 2002): P need not be known

e (Solombrino 2002/ Znojil 2006): P need not be self-adjoint
(= the “weak” /“strengthened” pseudo-Hermiticity)

(M.Z., Phys. Lett. A 353 (2006) 463 - 468 and

J. Phys. A: Math. Gen. 39 (2006) 4047 - 4061)
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D. II.
Typical example: ODE with = € (—o0, 00)

Hermiticity replaced by PT —symmetry:

H = —ddeJrU(x)JriW(x) £ H', U)=U(-z), W()=-W(-=x),
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E.
ARE WE STILL INSIDE QUANTUM
MECHANICS? YES, WE ARE!
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E. I.

Ad hoc redefinition of the inner product

discovery (nuclear physics)
(F.G.S., H.B.G. and F.J.W.H., Ann. Phys. 213 (1992) 74)

rediscoveries: Znojil 2002, Mostafazadeh 2002, Bender et al 2002

series of dedicated conferences:

(= http://gemma.ujf.cas.cz/” znojil)
various symbols for the “metric”: T, PQ, ny, CP, exp (@, ©

the most recent review: C. Bender, hep-th/0703096.
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E. II. Quantum Mechanics on one page:

Reality of spectra: condition sine qua non

e quintessence: quasi-Hermiticity HT =0 HO™!, © > 0

e explicit formulae:

H =%, In) e ((n] and © = 5, [n) 1, (nl
e two definitions needed:

Hn) = E,|n) and (n|H = E,{(n|
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Summary: All these results are freshly published:
Miloslav Znojil,
Maximal couplings in PT-symmetric chain-models with the real spectrum of
energies
J. Phys. A: Math. Theor. 40 (2007) 4863 - 4875.

(math-ph/0703070).
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