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A classical, non-quantum knot




A classical knot which is
PT (= left-right) symmetric
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OK, but what do I mean by

a PT —symmetric quantum knot?



A picture with a short answer:

P.T.O.



Schroedinger’s integration path C of the
PT-symmetric quantum knot
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The plan of my answer:

o I. context:

schematic Q(F)T with v € R, [U(¢)) € Ly(R), i.e.,
= standard QM in disguise — to be generalized

o I1. quantum knots (elementary examples)

(a) a potential-less P7 —symmetric quantum knot,
(b) quantum knots with V' # 0

o III. theory: from PT —S QM [Bender| to 3-HSF of QM

o IV. new physics: quasi-stationarity paradox resolved
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II. QUANTUM KNOTS

(two or three elementary examples)
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A. the first example:

e free radial Schrodinger equations with n =0,1,... in
d? (0+1) D -3
) (r) + - U(r)=E¢(r), b=n+——

E =r% z=rrand ¥(r) = /2 o(2)

e Bessel — solvable:

Y(r) = \/FHS)(H;T) + ¢ \/;HZSQ)(/{T), v=1L(+1/2.
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asymptotic wedges = defined

on the multisheeted Riemann surface of multivalued analytic

wave functions ¢ (r)
o Sy={r=—ige¥|o>1, p € (-n/2,7/2)},

e Sy ={r=—-ieF*"pe?| o> 1, p € (—7/2,7/2)},

k=1,2

3 g e e e e
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employed:

e knot-shaped integration contour CV)
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Remeber?
The path Cwith N=2
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employed:

e knot-shaped integration contour CV)

e asymptotic formulae:

[ 2v + 1 —1/4
%ZHS)(Z) exp | —i (z — MVTH)] = 1—u+. .

[ 2 1 2 -1/4
7%Z[{f)(z) exp 1<Z—M)] = +u+....

e dichotomy: in Sy: unphysical Hﬁl)(z), physical H,EQ)(Z)

in Soy41 physical H,Sl)(z), unphysical Hy)(z)
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solved, with C") connecting Sy and S,,,, m = 2N:
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[mx

Correct: m=4
for the path Cwith N=2

/7 TN\

L

N

|
J

Re x

19




thus, with C") connecting S, and S,,, m = 2N::
W(r) = e/r HY(kr) (withr € &) —

_ sin(1+m)mv sin mmvy

H(Z) (Zeimﬂ)

b HP(2) + ™ H{V(2)

Sin TV Sin TV

2

e solved at any energy F = k~, since

boundary conditions quantize the angular momenta:

M — N
2N

2Nv =integer, v #integer — [ =

M =1,2,3,..., with forbidden M # 2N,4N,6N, ... .
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) SUMMARY:

e cven dimensions D =2p —=/(=n+p—2 —
M = (2n +2p — 2) N always forbidden
e odd dimensions D =2p+1=/=n+p—3/2 =
M = (2n +2p — 1) N never forbidden
e monoenergetic finite-norm (i.e., wave-packet-like) solutions

e loss of the observability of the coordinates
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B. the second example:

e same radial Schrodinger equation with new V (r) = ~/r?
and with n =0, 1, ... in modified

(l+1) =7+ (n+¥> <n+¥)

O lemma: 3 bound-state-supporting coupling constant

M\* +D—22
pr— _ —_ n _
TN >
at any preselected dimension D, angular-momentum index n,

winding number N and an “allowed” integer M
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C. the third example:

d? ((0+1)
3 (r) +

(r)+VI(r)(r) = E(r)

r2

Vir)y=r’ir) +a(ir)/?

asymptotic wedges = defined differently

() = () + e (r)

¢(1’2)(T) — i corrections, d="" ., f=24+-.

7 2
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_X

%2 = cosimd + 1 sin 176, decadic AHO (§ = 8)
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@ A CORRECT BUT NAIVE SUMMARY:

e a redefinition of the inner product in the Hilbert space is

needed — replace

(] 6) = / ¥ (2)9(x)da

by

(] 6) = / ¥ (2) Oz, ) dly)da dy
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ITI. THEORY:

three-Hilbert-space formulation of QM
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A. back to textbooks
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1. theoretical framework: standard QT

Table 1: Usual Dirac’s notation in QM

Hilbert space

element

functional

inner product

Hamiltonian

HD

|1

<]

=YY~

h = hi

bra <, ket |¢ >

ON basis of eigenstates { |n> }
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2. changes of representation HY «—— H®

employing two vector spaces : HY = Qunitary) H)

mappings of operators : h = Qunitary) H QL

(unitary)
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2. changes of representation HY «—— H®

employing two vector spaces : HY = Q(unitary) H )

mappings of operators : h = Qunitary) H Q!

(unitary)

= useful: Fourier transform x — p: hy;, proportional to —A

Hk'm - Q_l

(unitary)

hin Qunitary) ~ P12 = SIMPLER!
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2. changes of representation HY «—— H®

employing two vector spaces : HY = Q(unitary) H )

mappings of operators : h = Qunitary) H Q!

(unitary)
= useful: Fourier transform x — p: hy;, proportional to —A

Hk'm - Q_l

(unitary)

hin Qunitary) ~ P12 = SIMPLER!

= formal: the same vector spaces:

HY = Ly(RY) and H® = Ly(RY)  (unitary equivalence).
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3. main idea: use Q(,onunitary)

and extend theoretical framework

Table 2: Adapted Dirac’s notation

two Hilbert spaces element functional | inner product | Hamiltonian
HW == Q) | <Yl = (T | <Pl = h=QHQ!
H® %) (¥] (4" H+# H
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B. special case: PTSQM
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1. beyond unitarity:

00 -1

Q0 — Q(nonumtary) - Zn,mzo ‘TL>— Vn,m <m| 7£ (Q(nonum’tary))Jr

— invertible maps, HO = Q(nonunitary) H(2>,

h = Q(nonum'tary) HQ !

(nonunitary)
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1. beyond unitarity:

00 -1

Q0 — Q(nonumtary) - Zn,mzo ‘TL>— Vn,m <m| 7£ (Q(nonum’tary))Jr

— invertible maps, HO = Q(nonunitary) H(2>,

h = Q(nonum'tary) HQ !

(nonunitary)

= isospectrality with h =" |n> E, <n|

H = Z Q_l ) ‘ n= E, <n ‘ Q(nonumtary) :

(nonunitary
n=0
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2. mathematics in H®:

-1

= basis kets: |n) = Q(nonummry

)\n>
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2. mathematics in H®:

= basis kets: |n) = Q(;lonummry) | n >
= AND another set:
— Of — Of _
| n>> T Q(nonunitary) | n~== Q(nonunitary) Q(nonunitary) | n> =0 | n>

37



2. mathematics in H®:

-1

= basis kets: |n) = Q(nonummry

)\n>

= AND another set:

| n>> = QJ(rnonum'tary) | n~== QJ(rnonunitary) Q(nonum’tary) | n> =0 | n>

— updated spectral decomposition in H®:

H=Y0 ) Ey(n|6 # H

= “biorthogonal basis”: <m|n>=J,,, = (m|n) .
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3. physics in H?: SIMPLER Hs in

= nuclei: Dyson’s Qonunitary) [SGH "92]
molecules: generalized Fourier ), ,unitary) [BG "93]

fields: parity-pseudo-Hermiticity [BM 97, BB 98]
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3. physics in H?: SIMPLER Hs in

= nuclei: Dyson’s Qonunitary) [SGH "92]
molecules: generalized Fourier ), ,unitary) [BG "93]

fields: parity-pseudo-Hermiticity [BM 97, BB 98]

00
._ f _
P Z Q(nonummry) ’ ne o, <N ’ Q(nonum’tary} ) Op = +1 )
n=0

= PTSQM: compatible with “the first principles”!
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C. new: “3-HS QM”
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preliminaries:

= a reduced ansatz Q(,onunitary) = 2o | 0> fin (7]

= the ambiguity of the metric is reproduced:

0 =010 =3 [n) i (0

= the invertibility of the map and metric:

o0 o

_ _ _ 1
Q(nlonunitary) - Z ‘n> :unl =~ n‘ y © = Z ‘n> <?’L’

n=0 n=0
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1. the third Hilbert space H)

Table 3: Definitions (2 = Quonunitary))

Hilbert space element dual inner product Hamiltonian
HWL [ = Q) | <] = (|QF <Y - h =QHQ™! (Hermitian)
H®? (auxiliary) |4) (V| (Y)Y H (non-Hermitian, simple)
HE W) | (l==<vl0 | @) | H ([quasiHermitian)
T® Jy) — (Y], [¥) € HP
T ) — (@,  [¢) eH®
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2. remarks:

(a) H=Q ! ) e Qonunitary) can be Hermitian in H©®) iff

(nonunitary

hS=Sh where S =S = Qnonunitary) anonummry) 71

(b) {(alHb) = (alH|b) = (a|© H|b) = (a|H' ©[b) = (H a|b)

(consistence of observability)

(c) the quasi-Hermiticity condition in H(%):

H =0HO™, 0= Vnonunitary) = O >0

(nonunitary)
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3. main theorem: unitary equivalence

between H®) and HW

<<¢1 W2> == ¢1\ Q(nonum’tary) Q (nonunitary) ’¢2 -== ¢1 ‘¢2 ~

A full parallel with Fourier transformation achieved.

45



IV. NEW PHYSICS:

a sample of the broader applicability of the formalism:

quasi-stationarity paradox resolved
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3-HS QM with time-dependent observables:

(a) time-dependent Schrédinger equation in H(:

10|p(t)= = h(t)|@(t)=, solution |p(t)= = u(t)|p(0)=

via  i0mu(t) = h(t) u(t)
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(b) unitary in H3):

<o(t) | p(t) = = <p(0) [ (0)=, [D(t)) = Q7 (t) [o(t)-

and (®(t) | = <p(t) [€1).

(c) feasible in H®) alone:

[@(t)) = Un(t) |2(0)),  Ug(t) = Q7' (t) u(t) (0)

0(1)) = U0 12(0)),  UL#) = Qi@ ut) [27(0)]"
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MAIN THEOREM:

time-evolution generator in H®:

Higen(t) = H(t) — 12 (£)2(1)
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PROOF: via differential operator equations:

i0,Ur(t) = —Q 1(t) [10,Qt)] Ur(t) + H(t) Ug(t)
U (t) = H'() Uj(t) + [109'0)] [27'0)] Uf®)

In H® they form the two non-Hermitian partners of the

standard evolution equation in HW.

20



verified also by the differentiation of the square of the norm:

10: (P (1) [ D(1)) = i0:(P(0) [ UL(t) Ur(t) | $(0)) =
= (@(0) | [0:UL(t)] Ur(t) | 2(0)) + (@(0) | UL(t) 10:Ur(t)] | 2(0)) =
= {(@(0) | UL(t) [-H(t) + Q7 (1) [0Q)]] Un(t)|2(0)) +

+(@(0) | UL(t) [H(t) — QL) [18:201)] Ug(t) | 9(0)) = 0.

QED.
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IMPORTANT COROLLARY:

the time-dependent Schrédinger equations in H®):

lat‘q)(t» — H(gen)<t) ’(I)(t»

10D (1)) = Hgen)(t) |2(2)))

where operator H,.,(t) is not observable

02



() SUMMARY:

e an additional dynamical information in the metric © # [
(ambiguity removal)
e O allowed to depend on time: brachistochrone updates
asked for
e O(t) tuned to ALL observables = arbitrary functions of

time.
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THE END OF THE STORY
of PTSQM on Riemann sheets

with nontrivial monodromy group

and time-dependent Hilbert space H®)
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SUPPLEMENTA AND
APPENDICES
(bringing, first of all, references and

historical remarks)
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(a) prehistory:
3 complex V(x) with real spectra:
sample: Buslaev and Grecchi, 1993:
V() ~ —z* at |z| > 1

exhibited P77 —symmetry

o6
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+1Imx
edge
BG choi ce
sector S; ~
Re x
sector S
4 e BB choi ce
edge

Figure 1: Complex curves of coordinates (BG oscillator)
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explanation: 4 a Hermitian equivalent of
Hpry¥(z) = Ed(z)
with Dirichlet abcs

@D(Q-ew):(), o> 1

inside the wedges where, e.g.,

p c 3m 27
left down 3 ) 3

(Smilga: a “cryptoreality” of the spectrum)

29



(b) 1998 = year zero:

class of BB’s PT symmetric potentials:

V(z) = Veymm(x) + 1 Vantisymm ()
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(c) 2001 = year one:

DDT’s proofs of the reality of the spectra
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(d) 2005 = the birth of QTs:

e MZ, quant-ph/0502041

Phys. Lett. A 342 (2005) 36 - 47

e MZ, quant-ph /0606166

J. Phys. A: Math. Gen. 39 (2006) 13325 - 13336
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Figure 2: BG-oscillator toboggan at £ # —1,0, with N = 2
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II. MODELS ON COMPLEX

CONTOURS CWV),

PT —symmetric quantum mechanics
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(a) the first step: spiked HOs

MZ

)

PT symmetric harmonic oscillators

Phys. Lett. A 259 (1999) 220 - 3.

2
(—d— + ae+) + :C2> Y(x) = Ey(x)

dr? 72
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defined along straight contour
C<O>:{x lz=t—1¢e,te IR}

3 “twice as many’ bound-state levels
E = En,é,i =4n + 2+ 2a(/)

= toboganically trivial
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(b) the second step: AHOs
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(b.1) non-tobogganic abcs:

——— + Vpr()| ¥(z) = E(z)

Y(£Re L+ilm L) =0,

Ll >1 or |L|— 0.
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(b.2) tobogganic, along loops
on multisheeted Riemann surfaces

with, say, ¢ € (—(N + 1)m, Nx) in
cW) = {xzsg(gp,N)ew,s > O} .

o+ /2
N) = 1/1 4+ tan?
ole, N) \/+ W ON 1

70
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Figure 3: Upside down? Winding number still NV = 2
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necesssary: branch point in ¢ (x), say, from

irrational constant

V(z) ~ 9

X

what is then the P7 —symmetry of ¢(z)?
the left-right symmetry of V)

along the whole Riemann surface.
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III. CONSTRUCTIONS OF

QUANTUM TOBOGGANS
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(a) QES models

Miloslav Znojil (quant-ph/0502041):
PT-symmetric quantum toboggans

Phys. Lett. A 342 (2005) 36-47.
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model:

Vi) = $10+asymptotically smaller terms
ZD(J?) — 6_336/ 6+asymptotically smaller terms

reparametrized

1
¢<37) = eXp —6Q6 cosbp + ...,

76



7



fifth fifth

/ /

third third

N

first / \flrst
Q)
Re_x

Figure 4: Domain of allowed asymptotics of decadic-oscillator contours

Imx Ot
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4 five non-tobogganic wedges:

0 B T T T 37
(first right) — _§+1_27_§‘|‘1_2 ;
0 B T m™ m 3’

(first left) — _§_E7_§_ﬁ

T bm T 77T>

Q(third right) — <_§ T 1_27 _5 + ﬁ

™ 97 7

Qfifth left) = (‘5 BT Uiy

117
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(b) nontrivial: non-QES levels:

trick: P7 —symmetric transformations changing the contour

30



An “initial” P7T —symmetric model

- 2 7]
_% — (iz)? + AW (iz) | (z) = E(\) ()

with any sample potential:
W(iz) = X gg(iz)”
exposed to a change variables

iz = (iy)?, V(x) =y e(y).



in detail:

at a > 0 we have

N\ l—«
idr =%y dy, (i) 4 _ i
a dy dx

Gives the equivalent, “Sturmian” problem

(cf. Shanley, PHHQP VI)

82



i.e., an “intermediate” differential

equation

d d
l—a ™ 1-a" o
Y Y w(y)+

+i%a | =(iy)* + AW [(iy)*]—

—EN)] y?ely) =0.

33



the first term “behaves”,

d d
11— 11—« [<&_1>/2] p—
ot 090 @2 2
=y e adyz‘SO(y)w(@—Oz)yQ_ “oly),

at the specific

84



Conclusion: the new equation

is of the same Schrodinger form:
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Important: the change of variables
changes the angle between asymptotes
and, hence, it can

diminish the winding number N

36



Example: polynomial potentials

are interrelated, o = 1/2 giving Vy(y) from

d’ 00 +1)

—— o(x)+ - p(x)+Vi(z) p(z) = Ep(z),

Vi(z) = 2%+ fra* + foa? + fooz ™2

Vo(y) = —(iy)™+i g1 y+9-1 (iy) " +g_2 (iy) .

—> upper sextic = rectified QT HO (pto)

87
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Im x

(HO cut) (HO cut)

Re x

Figure 5: Sextic oscillators B (usual) and C (mapped on HO toboggan)
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(c) feasible and useful:

perturbed harmonic oscillators living on a complex curve:

MZ (quant-ph/0606166v1):

Spiked harmonic quantum toboggans

90



Perturbed harmonic oscillator

Vix) = 72+ Z 9(3) 2’
B

can be topologically nontrivial. Its
O(x) ~ ! E (@) = ei$2/2, 2| > 1

= multivalued analytic functions

91



At any k € Z they are
(a) “physical” (along a ray zy = pe'?)

(b) “unphysical”. E.g.,
‘
S = | P At e ()

YUPhYS) () kw46 € (% ST) .

~

\

92



alternatively,

(
H(UWPhys) (1)

?

() = ¢

PPl (z),

\
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For toboggans we define
kr=0and k; =1at N =0,
kp=—land kj=2at N =1,

kp=—2and k; =3 at N =2 etc.

94



Riemann-surface “tobogganic trajectories”

D((ij]\;?QM, tobogganic) _ {CE _ . Q(SD, N) eigp}

© € (—(N+ 1)m, Nm)

o+ /2
N) = 4/1 4+ tan?
ol, N) \/ Tt o
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P7T —symmetry in the presence of the single branch point

parity-like operators pE) . 4+ z-exp(£ir)
map /C,, into sheets ICp41.

two eligible rotation-type innovations 7° ()

96



same for P T(F) and

f - .
NN\  ~PTSQM,tobogganic) ;4

97



Bound states

Hpry¥(z) = E(z)

with Dirichlet inside the wedges,

0 T T
w(g-eZ ):O, o> 1 9+kijf776 (_Z’Z)

spectra = real in unbroken cases.

98



IV. SCATTERING ALONG THE

TOBOGGANS

99



once

R S ~

/N N /N N /N N /N N

EICEISEICE

=

e

in” and “out” wedge boundaries are

i O0in
)

l

— 0 el eout7
1 0,
)

—>Q6

— 0 el Houtj

Oout = (N — 1/4) T,
Oin = —(N +5/4),

Oout = (N +1/4) 7.
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independent solutions become equally large
and oscillate

not only when V(x) < E at ¢ — o0

but also for many other potentials

including our 22 —dominated sample model.

101



incoming-beam normalization
Y (Q . ¢! ‘92'”) = ¢)(z)+B zp(T)(x), o> 1,
and outcoming-beam normalization,
Y (Q-ewm‘t) = (1+F) w<t>(x), o> 1,
with incident and reflected waves

(i) = eFIE)2

102



Exactly solvable model of scattering on z°

d2 2
_de + - 51321/4 + xQ ¢<$) — E¢(37),

set 2 = —ir along the first nontrivial scat-

tering path AE%.
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“in” branch with r < —1 and

“out” branch with r > +1

a+1—pu
2

l,a .
X(a)(r) =712/ Y ( o+ 1 —iT> ,

linearly independent partner

X(—oz)(ﬂa a#n € IN, F = 2p.

104



7| > 1 estimate,
ir /2 ri/2 exp —im (a+1) /4]
Mo+ 1+ p)/2]

—ir /2 r—1/2 exp +im (a+1) /4]
Mla+l—pw)/2

INe
rits

X(oz)(r) ~ € +

+e

‘rigid” at & > 0, p = E/2 > 0 and

z] = [\/(r)] > 1

105



(Coul)

out

Note that ¢

(1) becomes “distorted”,
sin(kr+const) — sin(kr+const-log r+const) .

Similar here, for ¥y, out(r) ~

=14+ (atp) /2 ir/2 OXP —im (—a+1) /4
M(—a+ 1+ pu)/2]

106
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V. TOBOGGANS IN

POTENTIALS WITH MORE

SPIKES

107



choose two branch points r = +£1.

G G*
(z — 1)? i (2 + 1)2

V(:IZ) — Vregular(x) +

(cf. Sinha A and Roy P 2004 Czechosl. J.
Phys. 54 129)
— plus: particle moving along

a P —symmetric “toboggan” path.

108



(a) an enumeration of the paths

2(@T)(s) encircling two branch points by winding

counterclockwise around xgl_?)P) (letter L),

counterclockwise around ng)P) (letter R),

clockwise around xgl_?)P) (Q =L,

clockwise around ng)P) (P=R).

109



four-letter alphabet,
= '9(s),

a word p of length 2NV,
o = ) = non-tobogganic

PT —symmetry L < R, o= QJQ!

110



at N =1, 3 four possibilities,

() e {L,L—l,R,R—l} . N=1,

0 € {LR,L—lR—l,RL,R—lL—l} C N=1.

111



dozen cases lat N = 2,

{LL, LR,RL.RR,L 'R, R™L.LR™!,
RL~' .= 'R~ R R—lR—l}
(“shorter” LL™', L7'L  RR™!, R7!'R

not allowed among 4° = 16 eligible)

112



at N = 3, | total number = 306:

cross 28 out of 4% = 64 words,

QWNVA) = QINAL) | JWNAR) (prev. L, R)

Q(NAL)

QNALS) | J((NAL2)

NALS3) (

one or two inversions in O six words),

in QWAL 3dd R or R (eight words).

113



at N =4 | we have 256 — 76 — 40 = 140:

14 elements in Q(NAL4)

24 elements in QW AL?’), L — R

QALY (gingle inversion, 16 elements),

QWVAL22) (4o inversions, 8 elements)

QWVAL23) (three inversions, 16 elements).

114



(b) rectifiable contours (20)(s)

recollect: iz = (12)?, ¥n(x) = /2 on(2)
a strict equivalence of HO QT to

2 2_
(—% + 420 4 415,22 4 2 4) o(z) =

Z

0 along a manaifestly non-tobogganic path.
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Im x

(HO cut) (HO cut)

Re x

Figure 6: Both the HO-cut lines move upwards, contour C becomes tobogganic
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now, to

> l+1)  ((L+1) .
— + = 1) + (1 1)2 + V(ix)

dz?

we, similarly, assign the rectified partner

- _

s Ueps(i2)| () =0

118



Ueff<i z)=U(iz)+

plptl) plp+1)

(z = 1)7

(z+1)

119
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implicit rectification formula

K

|+ (iz)? = {1 + (m)ﬂ |
2z = —1p on itself:

explicit rectification formula

r=—iy/(1 - 22k -1

120
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Effective non-tobogganic potentials - construction = routine:

(x) = x(2) p(z) with x(z) = const //5(

(Liouville L 1837 J.Math.Pures Appl. 1 16)
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shapes of the tobogganic pull-backs:
the vicinity of the negative imaginary axis
: .\ K 1/2
r=—ire! — =i {(1—|—7‘26219) —1} .

factor v/ at the small radii r

parallelism at r > 1
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consequences:

knot-like £90(s) by computer graphics,

straight-line z(s) = s — ie pulled back

N sensitive to € (pto)
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Figure 1
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Figure 7: Two bitoboggans (k = 2.4, s € (0.4,1.4))
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favorable property:

winding number grows quickly with x

(pto)
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Figure 2
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Figure 8: Two bitoboggans (k = 3, s € (0.4,1.4))
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user-friendliness:

winding numbers arbitrarily large
paths very close to BPs

the sensitivity to the shift recurs

(pto)
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Figure 3
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Figure 9: Two bitoboggans (k =5, s € (0.4,1.4))

132




IT1I. OUTLOOK:

Three-Hilbert-space formulation of QM
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1. relativistic QM in H2?:

= first-quantized Klein-Gordon [M ’03]

(O —A+m2(aj)\

)

= channel-coupling models [Z ’06]

H:

= first-quantized Proca [JS ’06, SJZ ’07]
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2. beyond QM:

= o? dynamos in MHD [GK ’06, GZ ’07]

(0 )
\ )

Complex spectra admitted in physical regime.

H:

New mathematics needed for perturbations
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in boundary conditions.

= cosmology [M ’03, ACK ’06]

VI. SUMMARY

136



e in rectified tobogganic contours z(20)(s)

descriptor word pq inferred a posterior:

e T2 observable if and only if

PT —symmetry unbroken

e topology-dependent spectra
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