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A classical, non-quantum knot

2



A classical knot which is

PT (= left-right)
symmetric
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.

OK, but what do I mean by

a PT −symmetric quantum knot?
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A picture with a short answer:

P.T.O.
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0

0

Schroedinger’s integration path C of the

PT-symmetric quantum knot

Re_x

Im_x
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The plan of my longer answer:

• context:

schematic Q(F)T with ψ ∈ R, |Ψ(ψ)〉 ∈ L2(R), i.e.,

7



The plan of my answer:

• context:

schematic Q(F)T with ψ ∈ R, |Ψ(ψ)〉 ∈ L2(R), i.e.,

= standard QM in disguise −→ to be generalized

8



The plan of my answer:

• context:

schematic Q(F)T with ψ ∈ R, |Ψ(ψ)〉 ∈ L2(R), i.e.,

= standard QM in disguise −→ to be generalized

• I. quantum knots (elementary examples)

(a) a potential-less PT −symmetric quantum knot,

9



The plan of my answer:

• context:

schematic Q(F)T with ψ ∈ R, |Ψ(ψ)〉 ∈ L2(R), i.e.,

= standard QM in disguise −→ to be generalized

• I. quantum knots (elementary examples)

(a) a potential-less PT −symmetric quantum knot,

(b) quantum knots with V 6= 0

10



The plan of my answer:

• I. context:

schematic Q(F)T with ψ ∈ R, |Ψ(ψ)〉 ∈ L2(R), i.e.,

= standard QM in disguise −→ to be generalized

• II. quantum knots (elementary examples)

(a) a potential-less PT −symmetric quantum knot,

(b) quantum knots with V 6= 0

• III. theory: from PT −S QM [Bender] to 3-HSF of QM

• IV. new physics: quasi-stationarity paradox resolved
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.

II. QUANTUM KNOTS

(two or three elementary examples)
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A. the first example:

• free radial Schrödinger equations with n = 0, 1, . . . in

− d2

dr2
ψ(r) +

`(` + 1)

r2
ψ(r) = E ψ(r) , ` = n +

D − 3

2

E = κ2, z = κr and ψ(r) =
√

z ϕ(z)

• Bessel – solvable:

ψ(r) = c1

√
r H(1)

ν (κ r) + c2

√
r H(2)

ν (κ r) , ν = ` + 1/2 .
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asymptotic wedges = defined

on the multisheeted Riemann surface of multivalued analytic

wave functions ψ(r)

• S0 = {r = −i % ei ϕ | % À 1 , ϕ ∈ (−π/2, π/2)},

• S±k = {r = −i e±i k π % ei ϕ | % À 1 , ϕ ∈ (−π/2, π/2)},

k = 1, 2, . . . .
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employed:

• knot-shaped integration contour C(N)
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0

0

Remeber?

The path C with  N = 2

Re_x

Im_x
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employed:

• knot-shaped integration contour C(N)

• asymptotic formulae:

√
πz

2
H(1)

ν (z) exp

[
−i

(
z − π(2ν + 1)

4

)]
= 1−ν2 − 1/4

2iz
+. . . ,

√
πz

2
H(2)

ν (z) exp

[
i

(
z − π(2ν + 1)

4

)]
= 1+

ν2 − 1/4

2iz
+. . . .

• dichotomy: in S2k: unphysical H
(1)
ν (z), physical H

(2)
ν (z)

in S2k+1 physical H
(1)
ν (z), unphysical H

(2)
ν (z)
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solved, with C(N) connecting S0 and Sm, m = 2N :

18



0

0

Correct: m = 4 

for the path C with  N = 2

Re_x

Im_x
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thus, with C(N) connecting S0 and Sm, m = 2N :

ψ(r) = c
√

r H(2)
ν (κr) (with r ∈ S0) −→

H(2)
ν

(
zeimπ

)
=

sin(1 + m)πν

sin πν
H(2)

ν (z) + eiπν sin mπν

sin πν
H(1)

ν (z)

• solved at any energy E = κ2, since

boundary conditions quantize the angular momenta:

2Nν = integer , ν 6= integer =⇒ ` =
M −N

2N
,

M = 1, 2, 3, . . . , with forbidden M 6= 2N, 4N, 6N, . . . .
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⊙
SUMMARY:

• even dimensions D = 2p =⇒ ` = n + p− 2 =⇒

M = (2n + 2p− 2) N always forbidden

• odd dimensions D = 2p + 1 =⇒ ` = n + p− 3/2 =⇒

M = (2n + 2p− 1) N never forbidden

• monoenergetic finite-norm (i.e., wave-packet-like) solutions

• loss of the observability of the coordinates
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B. the second example:

• same radial Schrödinger equation with new V (r) = γ/r2

and with n = 0, 1, . . . in modified

`(` + 1) = γ +

(
n +

D − 3

2

) (
n +

D − 1

2

)

♥ lemma: ∃ bound-state-supporting coupling constant

γ =

(
M

2N

)2

−
(

n +
D − 2

2

)2

at any preselected dimension D, angular-momentum index n,

winding number N and an “allowed” integer M
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C. the third example:

− d2

dr2
ψ(r) +

`(` + 1)

r2
ψ(r) + V (r) ψ(r) = E ψ(r)

V (r) = r2(i r)δ + α (i r)δ/2

asymptotic wedges = defined differently

ψ(r) = c1 ψ(1)(r) + c2 ψ(2)(r)

ψ(1,2)(r) = e±d rf
+ corrections , d =

iδ/2

f
, f = 2 +

δ

2
.

23



0

Im_x

0 Re_x

iδ/2 = cos 1
4πδ + i sin 1

4πδ, decadic AHO (δ = 8)
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⊕
A CORRECT BUT NAIVE SUMMARY:

• a redefinition of the inner product in the Hilbert space is

needed – replace

〈ψ |φ〉 =

∫
ψ∗(x)φ(x)dx

by

〈ψ |φ〉 =

∫
ψ∗(x) Θ(x, y) φ(y)dx dy .
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.

III. THEORY:

three-Hilbert-space formulation of QM
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A. back to textbooks
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1. theoretical framework: standard QT

Table 1: Usual Dirac’s notation in QM

Hilbert space element functional inner product Hamiltonian

H(1) |ψÂ ≺ψ| ≺ψ|ψ′Â h = h†

bra ≺ψ|, ket |ψÂ

ON basis of eigenstates { |nÂ}
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2. changes of representation H(1) ←→ H(2)

employing two vector spaces : H(1) = Ω(unitary)H(2)

mappings of operators : h = Ω(unitary) H Ω−1
(unitary)
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2. changes of representation H(1) ←→ H(2)

employing two vector spaces : H(1) = Ω(unitary)H(2)

mappings of operators : h = Ω(unitary) H Ω−1
(unitary)

= useful: Fourier transform x → p: hkin proportional to −4

Hkin = Ω−1
(unitary) hkin Ω(unitary) ∼ |~p|2 =⇒ SIMPLER!
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2. changes of representation H(1) ←→ H(2)

employing two vector spaces : H(1) = Ω(unitary)H(2)

mappings of operators : h = Ω(unitary) H Ω−1
(unitary)

= useful: Fourier transform x → p: hkin proportional to −4

Hkin = Ω−1
(unitary) hkin Ω(unitary) ∼ |~p|2 =⇒ SIMPLER!

= formal: the same vector spaces:

H(1) = L2(Rd) and H(2) = L2(Rd) (unitary equivalence).
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3. main idea: use Ω(nonunitary)

and extend theoretical framework

Table 2: Adapted Dirac’s notation

two Hilbert spaces element functional inner product Hamiltonian

H(1) |ψÂ = Ω|ψ〉 ≺ψ| = 〈ψ|Ω† ≺ψ|ψ′Â h = ΩHΩ−1

H(2) |ψ〉 〈ψ| 〈ψ|ψ′〉 H 6= H†
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B. special case: PTSQM
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1. beyond unitarity:

Ω −→ Ω(nonunitary) =
∑∞

n,m=0 |nÂ νn,m 〈m| 6= (Ω−1
(nonunitary))

†

= invertible maps, H(1) = Ω(nonunitary)H(2),

h = Ω(nonunitary) H Ω−1
(nonunitary)
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1. beyond unitarity:

Ω −→ Ω(nonunitary) =
∑∞

n,m=0 |nÂ νn,m 〈m| 6= (Ω−1
(nonunitary))

†

= invertible maps, H(1) = Ω(nonunitary)H(2),

h = Ω(nonunitary) H Ω−1
(nonunitary)

= isospectrality with h =
∑∞

n=0 |nÂ En ≺ n |

H =

∞∑
n=0

Ω−1
(nonunitary) |nÂ En ≺ n |Ω(nonunitary) .

35



2. mathematics in H(2):

= basis kets: |n〉 := Ω−1
(nonunitary) |nÂ
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(nonunitary) |nÂ

= AND another set:

|n〉〉 := Ω†
(nonunitary) |nÂ≡ Ω†

(nonunitary) Ω(nonunitary) |n〉 ≡ Θ |n〉

37



2. mathematics in H(2):

= basis kets: |n〉 := Ω−1
(nonunitary) |nÂ

= AND another set:

|n〉〉 := Ω†
(nonunitary) |nÂ≡ Ω†

(nonunitary) Ω(nonunitary) |n〉 ≡ Θ |n〉

= updated spectral decomposition in H(2):

H =
∑∞

n=0 |n〉En 〈n |Θ 6= H†

= “biorthogonal basis”: ≺m|nÂ= δm,n = 〈〈m|n〉 .
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3. physics in H(2): SIMPLER Hs in

= nuclei: Dyson’s Ω(nonunitary) [SGH ’92]

= molecules: generalized Fourier Ω(nonunitary) [BG ’93]

= fields: parity-pseudo-Hermiticity [BM ’97, BB ’98]
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3. physics in H(2): SIMPLER Hs in

= nuclei: Dyson’s Ω(nonunitary) [SGH ’92]

= molecules: generalized Fourier Ω(nonunitary) [BG ’93]

= fields: parity-pseudo-Hermiticity [BM ’97, BB ’98]

P :=

∞∑
n=0

Ω†(nonunitary) |nÂ σn ≺ n |Ω(nonunitary) , σn = ±1 ,

= PTSQM: compatible with “the first principles”!
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C. new: “3-HS QM”
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preliminaries:

= a reduced ansatz Ω(nonunitary) =
∑∞

n=0 |nÂ µn 〈〈n|

= the ambiguity of the metric is reproduced:

Θ = Ω†Ω ≡
∞∑

n=0

|n〉〉µ∗n µn 〈〈n|

= the invertibility of the map and metric:

Ω−1
(nonunitary) =

∞∑
n=0

|n〉µ−1
n ≺ n| , Θ−1 =

∞∑
n=0

|n〉 1

µ∗n µn
〈n|
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1. the third Hilbert space H(3)

Table 3: Definitions (Ω = Ω(nonunitary))

Hilbert space element dual inner product Hamiltonian

H(1) |ψÂ = Ω|ψ〉 ≺ψ| = 〈ψ|Ω† ≺ψ|ψ′Â h = ΩHΩ−1 (Hermitian)

H(2) (auxiliary) |ψ〉 〈ψ| 〈ψ|ψ′〉 H (non-Hermitian, simple)

H(3) |ψ〉 〈〈ψ| =≺ψ|Ω 〈ψ|Ω†Ω|ψ′〉 H ([quasi-]Hermitian)

T (2) : |ψ〉 −→ 〈ψ| , |ψ〉 ∈ H(2)

T (3) : |ψ〉 −→ 〈〈ψ| , |ψ〉 ∈ H(3)
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2. remarks:

(a) H = Ω−1
(nonunitary) h Ω(nonunitary) can be Hermitian in H(2) iff

hS = S h where S = S† = Ω(nonunitary) Ω†
(nonunitary) 6= I

(b) 〈〈a|H b〉 = 〈〈a|H|b〉 = 〈a|Θ H|b〉 ≡ 〈a|H†Θ|b〉 = 〈〈H a|b〉

(consistence of observability)

(c) the quasi-Hermiticity condition in H(2):

H† = Θ H Θ−1 , Θ := Ω†(nonunitary) Ω(nonunitary) ≡ Θ† > 0

44



3. main theorem: unitary equivalence

. between H(3) and H(1)

〈〈ψ1|ψ2〉 =≺ψ1|Ω(nonunitary) Ω−1
(nonunitary)|ψ2Â≡≺ψ1|ψ2Â

A full parallel with Fourier transformation achieved.
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.

IV. NEW PHYSICS:

a sample of the broader applicability of the formalism:

quasi-stationarity paradox resolved
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3-HS QM with time-dependent observables:

h(t) = Ω(t) H(t) Ω−1(t)

(a) time-dependent Schrödinger equation in H(1):

i ∂t|ϕ(t)Â = h(t) |ϕ(t)Â , solution |ϕ(t)Â = u(t) |ϕ(0)Â

via i∂tu(t) = h(t) u(t)

47



(b) unitary in H(1,3):

≺ϕ(t) |ϕ(t)Â = ≺ϕ(0) |ϕ(0)Â , |Φ(t)〉 = Ω−1(t) |ϕ(t)Â

and 〈〈Φ(t) | = ≺ϕ(t) |Ω(t).

(c) feasible in H(3) alone:

|Φ(t)〉 = UR(t) |Φ(0)〉 , UR(t) = Ω−1(t) u(t) Ω(0)

|Φ(t)〉〉 = U †
L(t) |Φ(0)〉〉 , U †

L(t) = Ω†(t) u(t)
[
Ω−1(0)

]†
.

48



MAIN THEOREM:

time-evolution generator in H(3):

H(gen)(t) = H(t)− iΩ−1(t)Ω̇(t)
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PROOF: via differential operator equations:

i∂tUR(t) = −Ω−1(t) [i∂tΩ(t)] UR(t) + H(t) UR(t)

i∂tU
†
L(t) = H†(t) U †

L(t) +
[
i∂tΩ

†(t)
] [

Ω−1(t)
]†

U †
L(t)

In H(2) they form the two non-Hermitian partners of the

standard evolution equation in H(1).

50



verified also by the differentiation of the square of the norm:

i∂t〈〈Φ(t) |Φ(t)〉 = i∂t〈〈Φ(0) |UL(t) UR(t) |Φ(0)〉 =

= 〈〈Φ(0) | [i∂tUL(t)] UR(t) |Φ(0)〉 + 〈〈Φ(0) |UL(t) [i∂tUR(t)] |Φ(0)〉 =

= 〈〈Φ(0) |UL(t)
[−H(t) + Ω−1(t) [i∂tΩ(t)]

]
UR(t) |Φ(0)〉 +

+〈〈Φ(0) |UL(t)
[
H(t)− Ω−1(t) [i∂tΩ(t)]

]
UR(t) |Φ(0)〉 = 0 .

QED.
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IMPORTANT COROLLARY:

the time-dependent Schrödinger equations in H(3):

i∂t|Φ(t)〉 = H(gen)(t) |Φ(t)〉

i∂t|Φ(t)〉〉 = H(gen)(t) |Φ(t)〉〉

where operator H(gen)(t) is not observable

52



⊙
SUMMARY:

• an additional dynamical information in the metric Θ 6= I

(ambiguity removal)

• Θ allowed to depend on time: brachistochrone updates

asked for

• Θ(t) tuned to ALL observables = arbitrary functions of

time.
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.

THE END OF THE STORY

of PTSQM on Riemann sheets

with nontrivial monodromy group

and time-dependent Hilbert space H(3)
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===========================

.

SUPPLEMENTA AND

APPENDICES

(bringing, first of all, references and

historical remarks)
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.

(a) prehistory:

∃ complex V (x) with real spectra:

sample: Buslaev and Grecchi, 1993:

V (x) ∼ −x4 at |x| À 1:

exhibited PT −symmetry
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.
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edge

edge

Im x

BB choice  

3sector S 

4sector S 

BG choice  

Re x

Figure 1: Complex curves of coordinates (BG oscillator)
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explanation: ∃ a Hermitian equivalent of

H(PT ) ψ(x) = E ψ(x)

with Dirichlet abcs

ψ
(
% · ei θ

)
= 0, % À 1

inside the wedges where, e.g.,

θleft down ∈
(
−3π

3
,−2π

3

)

(Smilga: a “cryptoreality” of the spectrum)
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.

(b) 1998 = year zero:

class of BB’s PT symmetric potentials:

V (x) = Vsymm(x) + i Vantisymm(x)

60



.

(c) 2001 = year one:

DDT’s proofs of the reality of the spectra

61



.

(d) 2005 = the birth of QTs:

• MZ, quant-ph/0502041

Phys. Lett. A 342 (2005) 36 - 47

• MZ, quant-ph/0606166

J. Phys. A: Math. Gen. 39 (2006) 13325 - 13336
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.
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0

0

Figure 2: BG-oscillator toboggan at ` 6= −1, 0, with N = 2
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.

II. MODELS ON COMPLEX

CONTOURS C(N):

PT −symmetric quantum mechanics

65



(a) the first step: spiked HOs

MZ,

PT symmetric harmonic oscillators

Phys. Lett. A 259 (1999) 220 - 3.

(
− d2

dx2
+

`(` + 1)

x2
+ x2

)
ψ(x) = E ψ(x)
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defined along straight contour

C(0) = {x |x = t− i ε, t ∈ IR}

∃ “twice as many” bound-state levels

E = En,`,± = 4n + 2± 2α(`)

= toboganically trivial
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(b) the second step: AHOs

68



(b.1) non-tobogganic abcs:

[
− d2

dx2
+ VPT (x)

]
ψ(x) = E ψ(x)

ψ(±Re L + i Im L) = 0 ,

|L| À 1 or |L| → ∞ .
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(b.2) tobogganic, along loops

on multisheeted Riemann surfaces

with, say, ϕ ∈ (−(N + 1)π, Nπ) in

C(N) =
{

x = ε %(ϕ,N) ei ϕ , ε > 0
}

.

%(ϕ,N) =

√
1 + tan2 ϕ + π/2

2N + 1
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.
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0

0

Figure 3: Upside down? Winding number still N = 2
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necesssary: branch point in ψ(x), say, from

V (x) ∼ irrational constant

x2

what is then the PT −symmetry of ψ(x)?

the left-right symmetry of C(N)

along the whole Riemann surface.
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III. CONSTRUCTIONS OF

QUANTUM TOBOGGANS
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(a) QES models

Miloslav Znojil (quant-ph/0502041):

PT-symmetric quantum toboggans

Phys. Lett. A 342 (2005) 36-47.
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model:

V (x) = x10+asymptotically smaller terms

ψ(x) = e−x6/6+asymptotically smaller terms

reparametrized

ψ(x) = exp

[
−1

6
%6 cos 6ϕ + . . .

]
,
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first first

thirdthird

fifth fifth

0Im_x

0

Re_x

Figure 4: Domain of allowed asymptotics of decadic-oscillator contours
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∃ five non-tobogganic wedges:

Ω(first right) =

(
−π

2
+

π

12
,−π

2
+

3π

12

)
,

Ω(first left) =

(
−π

2
− π

12
,−π

2
− 3π

12

)
,

Ω(third right) =

(
−π

2
+

5π

12
,−π

2
+

7π

12

)
, . . .

. . . Ω(fifth left) =

(
−π

2
− 9π

12
,−π

2
− 11π

12

)
.
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(b) nontrivial: non-QES levels:

trick: PT −symmetric transformations changing the contour
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An “initial” PT −symmetric model
[
− d2

dx2
− (ix)2 + λW (ix)

]
ψ(x) = E(λ) ψ(x)

with any sample potential:

W (ix) = Σ gβ(ix)β

exposed to a change variables

ix = (iy)α , ψ(x) = y% ϕ(y).

81



in detail:

at α > 0 we have

i dx = iααyα−1 dy,
(iy)1−α

α

d

dy
=

d

dx
.

Gives the equivalent, “Sturmian” problem

(cf. Shanley, PHHQP VI)
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i.e., an “intermediate” differential

equation

y1−α d

dy
y1−α d

dy
y% ϕ(y)+

+i2αα2
[
−(iy)2α + λW [(iy)α]−

−E(λ)] y% ϕ(y) = 0 .

83



the first term “behaves”,

y1−α d

dy
y1−α d

dy
y[(α−1)/2] ϕ(y) =

= y2+%−2α d2

dy2
ϕ(y)+%(%−α)y%−2α ϕ(y) ,

at the specific

% =
α− 1

2
.
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Conclusion: the new equation

is of the same Schrödinger form:

− d2

dy2
ϕ(y) +

α2 − 1

4y2
ϕ(y)+

+(iy)2α−2α2
[
−(iy)2α + λW [(iy)α] ϕ(y) =

= (iy)2α−2α2 E(λ) ϕ(y) .
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Important: the change of variables

changes the angle between asymptotes

and, hence, it can

diminish the winding number N
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Example: polynomial potentials

are interrelated, α = 1/2 giving Vg(y) from

− d2

dx2
ϕ(x)+

`(` + 1)

x2
ϕ(x)+Vf (x) ϕ(x) = E ϕ(x) ,

Vf (x) = x6 + f4 x4 + f2 x2 + f−2 x−2,

Vg(y) = −(iy)2+i g1 y+g−1 (iy)−1+g−2 (iy)−2.

=⇒ upper sextic ≡ rectified QT HO (pto)
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0

Im x

Re x

(HO cut) (HO cut)
C

B

Figure 5: Sextic oscillators B (usual) and C (mapped on HO toboggan)
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(c) feasible and useful:

perturbed harmonic oscillators living on a complex curve:

MZ (quant-ph/0606166v1):

Spiked harmonic quantum toboggans

90



Perturbed harmonic oscillator

V (x) = x2 +
∑

β

g(β) xβ

can be topologically nontrivial. Its

ψ(x) ≈ ψ(±)(x) = e±x2/2 , |x| À 1

= multivalued analytic functions

91



At any k ∈ ZZ they are

(a) “physical” (along a ray xθ = %ei θ)

(b) “unphysical”. E.g.,

ψ(−)(x) =





ψ(phys)(x), kπ + θ ∈ (−π
4 , π

4

)
,

ψ(unphys)(x), kπ + θ ∈
(

π
4 , 3π

4

)
.
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alternatively,

ψ(+)(x) =





ψ(unphys)(x), kπ + θ ∈ (−π
4 , π

4

)
,

ψ(phys)(x), kπ + θ ∈
(

π
4 , 3π

4

)
.
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For toboggans we define

kf = 0 and ki = 1 at N = 0,

kf = −1 and ki = 2 at N = 1,

kf = −2 and ki = 3 at N = 2 etc.
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Riemann-surface “tobogganic trajectories”

D(PTSQM, tobogganic)
(ε,N)

=
{

x = ε %(ϕ,N) ei ϕ
}

ϕ ∈ (−(N + 1)π, Nπ)

%(ϕ,N) =

√
1 + tan2 ϕ + π/2

2N + 1
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PT −symmetry in the presence of the single branch point

.

parity-like operatorsP(±) : x → x·exp(±iπ)

map Kn into sheets Kn±1.

two eligible rotation-type innovations T (±)

96



same for P(±)T (±) and

(
C(N)

)†
= D(PTSQM, tobogganic)

(ε′,N)
, ε′ = ε·e±iπ .
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Bound states

H(PT ) ψ(x) = E ψ(x)

with Dirichlet inside the wedges,

ψ
(
% · ei θ

)
= 0, % À 1 θ+ki,f π ∈

(
−π

4
,
π

4

)

spectra = real in unbroken cases.
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IV. SCATTERING ALONG THE

TOBOGGANS
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once “in” and “out” wedge boundaries are

A(N)
(L)

→ % ei θin, θin = −(N + 3/4) π,

A(N)
(L)

→ % ei θout, θout = (N − 1/4) π,

A(N)
(U)

→ % ei θin, θin = −(N + 5/4) π,

A(N)
(U)

→ % ei θout, θout = (N + 1/4) π .
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independent solutions become equally large

and oscillate

not only when V (x) < E at % →∞

but also for many other potentials

including our x2−dominated sample model.
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incoming-beam normalization

ψ
(
% · ei θin

)
= ψ(i)(x)+B ψ(r)(x), % À 1,

and outcoming-beam normalization,

ψ
(
% · ei θout

)
= (1+F ) ψ(t)(x), % À 1,

with incident and reflected waves

ψ(i,r)(x) ≈ e±i%2/2.
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Exactly solvable model of scattering on x2

[
− d2

dx2
+

α2 − 1/4

x2
+ x2

]
ψ(x) = E ψ(x),

set x2 = −ir along the first nontrivial scat-

tering path A(0)
(L)

.
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“in” branch with r ¿ −1 and

“out” branch with r À +1

χ(α)(r) = r
1
4+α

2 eir/2
1F1

(
α + 1− µ

2
, α + 1;−ir

)
,

linearly independent partner

χ(−α)(r), α 6= n ∈ IN, E = 2µ.
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|r| À 1 estimate,

r
1
4+α

2χ(α)(r) ≈ eir/2 rµ/2 exp [−i π (α + 1) /4]

Γ [(α + 1 + µ)/2]
+

+e−ir/2 r−µ/2 exp [+i π (α + 1) /4]

Γ [(α + 1− µ)/2]
.

“rigid” at α > 0, µ = E/2 > 0 and

|x| = |
√

(r)| À 1
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Note that ψ
(Coul)
out (r) becomes “distorted”,

sin(κr+const) → sin(κr+const·log r+const) .

Similar here, for ψin,out(x) ≈

r−1/4+(α+µ)/2 eir/2 exp [−i π (−α + 1) /4]

Γ [(−α + 1 + µ)/2]
+... .
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V. TOBOGGANS IN

POTENTIALS WITH MORE

SPIKES
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choose two branch points x = ±1,

V (x) = Vregular(x) +
G

(x− 1)2
+

G∗
(x + 1)2

(cf. Sinha A and Roy P 2004 Czechosl. J.

Phys. 54 129)

=⇒ plus: particle moving along

a PT −symmetric “toboggan” path.
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(a) an enumeration of the paths

x(QT )(s) encircling two branch points by winding

• counterclockwise around x
(BP )
(−) (letter L),

• counterclockwise around x
(BP )
(+) (letter R),

• clockwise around x
(BP )
(−) (Q = L−1),

• clockwise around x
(BP )
(+) (P = R−1).
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four-letter alphabet,

x = x(%)(s),

a word % of length 2N ,

% = ∅ = non-tobogganic

PT −symmetry L ↔ R , % = Ω
⋃

ΩT
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at N = 1 , ∃ four possibilities,

Ω ∈
{

L , L−1 , R , R−1
}

, N = 1 ,

% ∈
{

LR , L−1R−1 , RL , R−1L−1
}

, N = 1 .
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dozen cases at N = 2,

{
LL,LR, RL, RR, L−1R,R−1L,LR−1 ,

R L−1 , L−1L−1, L−1R−1, R−1L−1, R−1R−1
}

(“shorter” LL−1 , L−1L , RR−1, R−1R

not allowed among 42 = 16 eligible)
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at N = 3, total number = 36:

cross 28 out of 43 = 64 words,

Ω(NA) = Ω(NAL) ⋃
Ω(NAR) (prev. L,R)

Ω(NAL) = Ω(NAL3) ⋃
Ω(NAL2)

one or two inversions in Ω(NAL3) (six words),

in Ω(NAL2) add R or R−1 (eight words).
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at N = 4 we have 256− 76− 40 = 140:

14 elements in Ω(NAL4)

24 elements in Ω(NAL3), L ↔ R

Ω(NAL21) (single inversion, 16 elements),

Ω(NAL22) (two inversions, 8 elements)

Ω(NAL23) (three inversions, 16 elements).
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(b) rectifiable contours x(%0)(s)

recollect: i x = (i z)2 , ψn(x) =
√

z ϕn(z)

a strict equivalence of HO QT to
(
− d2

dz2 + 4z6 + 4Enz2 +
4α2−1/4

z2

)
ϕ(z) =

0 along a manifestly non-tobogganic path.
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0

Im x

Re x

(HO cut) (HO cut)
C

B

Figure 6: Both the HO-cut lines move upwards, contour C becomes tobogganic
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now, to

[
− d2

dx2
+

`(` + 1)

(x− 1)2
+

`(` + 1)

(x + 1)2
+ V (ix)

]
ψ(x) =

= E ψ(x) .

we, similarly, assign the rectified partner
[
− d2

dz2
+ Ueff (i z)

]
ϕ(z) = 0
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Ueff (i z) = U(i z)+
µ(µ + 1)

(z − 1)2
+

µ(µ + 1)

(z + 1)2
≡

≡ U(i z) + 2
µ(µ + 1)[1− (i z)2][

1 + (i z)2
]2

.
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implicit rectification formula

1 + (ix)2 =
[
1 + (iz)2

]κ
, κ > 1

z = −i % on itself:

explicit rectification formula

x = −i
√

(1− z2)κ − 1
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Effective non-tobogganic potentials - construction = routine:

d

d x
= β(z)

d

d z
, β(z) = −i

√
(1− z2)κ − 1

κ z (1− z2)κ−1
.

ψ(x) = χ(z) ϕ(z) with χ(z) = const /
√

β(z)

(Liouville L 1837 J.Math.Pures Appl. 1 16)
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(
−β(z)

d

dz
β(z)

d

dz
+ Veff [ix(z)]− E

)
χ(z) ϕ(z) = 0 .

Ueff (i z) =
Veff [i x(z)]− En

β2(z)
+

β′′(z)

2 β(z)
−[β′(z)]2

4 β2(z)

QED
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shapes of the tobogganic pull-backs:

the vicinity of the negative imaginary axis

z = −i r ei θ −→ x = −i
[(

1 + r2 e2 i θ
)κ − 1

]1/2
.

factor
√

κ at the small radii r

parallelism at r À 1
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consequences:

knot-like x%0(s) by computer graphics,

straight-line z(s) = s− i ε pulled back

N sensitive to ε (pto)
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Figure 7: Two bitoboggans (κ = 2.4, s ∈ (0.4, 1.4))
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favorable property:

winding number grows quickly with κ

(pto)
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.
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Figure 8: Two bitoboggans (κ = 3, s ∈ (0.4, 1.4))
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user-friendliness:

winding numbers arbitrarily large

paths very close to BPs

the sensitivity to the shift recurs

(pto)
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Figure 9: Two bitoboggans (κ = 5, s ∈ (0.4, 1.4))
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III. OUTLOOK:

Three-Hilbert-space formulation of QM
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1. relativistic QM in H(2,3):

= first-quantized Klein-Gordon [M ’03]

H =




0 −4 + m2(x)

I 0




= channel-coupling models [Z ’06]

= first-quantized Proca [JS ’06, SJZ ’07]
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2. beyond QM:

= α2 dynamos in MHD [GK ’06, GZ ’07]

H =




a b

c d




Complex spectra admitted in physical regime.

New mathematics needed for perturbations
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in boundary conditions.

= cosmology [M ’03, ACK ’06]

.

VI. SUMMARY
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• in rectified tobogganic contours x(%0)(s)

descriptor word %0 inferred a posteriori

• QT2 observable if and only if

PT −symmetry unbroken

• topology-dependent spectra
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