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In a box of size L, a spatially antisymmetric square-well potential of a purely imaginary
strength ig and size ` < L is interpreted as an initial element of the SUSY hierarchy of
solvable Hamiltonians, the energies of which are all real at ` < `max(g) ≤ L. The first
partner potential is constructed in closed form and discussed.
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1 Introduction

The technically slightly complicated but quantum-mechanically straightforward
solution of the one-dimensional and PT −symmetric Schrödinger equation

[
− d2

dx2
+ V (x)−D0

]
ψn(x) = Enψn(x), n = 1, 2, . . . (1)

with the Dirichlet boundary conditions ψ(±L) = 0 and with the purely imaginary
V (x) may be found elsewhere [1, 2, 3]. Here, such a model with real spectrum and

V (x) = V (+)(x) =

{
0
i g signx, g > 0

for

{
L > |x| > l

|x| ≤ l,

will be considered factorized and complemented by another, similar model,

− d2

dx2
+ V (+)(x)−D0 = ĀA ≡ H(+), AĀ = − d2

dx2
+ V (−)(x)−D0 ≡ H(−)

where the well known operators and identities are employed,

A =
d

dx
+ W (x), Ā = − d

dx
+ W (x), V (±) −D0 = W 2 ∓W ′ . (2)
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By symbols ψ
(+)
n (x) (resp. ψ

(−)
n (x)), n = 0, 1, 2, . . . we denote the wave functions

of H(+) (resp. H(−)) and have the so called unbroken-supersymmetry condition
Aψ

(+)
0 (x) = 0 of the Witten’s superymmetric quantum mechanics (SUSY QM,

[4]). As long as the latter formalism usually does not work with non-Hermitian
operators, we believe that both the construction and some unusual properties of
the partner potential V (−)(x) deserve an explicit description.

2 The PT −symmetric SUSY partner potential V (−)(x)

The purpose of the present section is to construct and study the SUSY partner
H(−) of the square-well Hamiltonian H(+) in the physically-relevant unbroken PT -
symmetry regime, corresponding to g < gc(l) of ref. [1].

2.1 The determination of the parameters

Let us denote the four regions −L < x < −l, −l < x < 0, 0 < x < l, l < x < L
by L2, L1, R1, R2, respectively. Identifying V (+) with our square-well potential
above, i.e., V

(+)
L2 (x) = 0, V

(+)
L1 (x) = −ig, V

(+)
R1 (x) = ig, V

(+)
R2 (x) = 0 we may set

D0 = k2
0 = t20 − s2

0 = −κ2
0 + ig and obtain for the superpotential and the partner

potential the respective formulae

W (x) =





WL2(x) = k0 tan[k0(x + xL2)]
WL1(x) = −κ∗0 tanh[κ∗0(x + xL1)]
WR1(x) = −κ0 tanh[κ0(x− xR1)]
WR2(x) = k0 tan[k0(x− xR2)]

(1)

and

V (−)(x) =





V
(−)
L2 (x) = 2k2

0 sec2[k0(x + xL2)]

V
(−)
L1 (x) = −2κ∗20 sech2[κ∗0(x + xL1)]− ig

V
(−)
R1 (x) = −2κ2

0 sech2[κ0(x− xR1)] + ig

V
(−)
R2 (x) = 2k2

0 sec2[k0(x− xR2)]

. (2)

Here xL2, xL1, xR1 and xR2 denote four integration constants. We choose

xL2 = L +
π

2k0
, xR2 = L− π

2k0
(3)

to ensure that V
(−)
L2 and V

(−)
R2 blow up at the end points x = −L and x = L. This

is in tune with [5]. We thus get

V
(−)
L2 (x) = 2k2

0 csc2[k0(x + L)] V
(−)
R2 (x) = 2k2

0 csc2[k0(x− L)]. (4)

Observe that for the superpotential, WL2(x) and WR2(x) also blow up at these
points:

WL2(x) = −k0 cot[k0(x + L)] WR2(x) = −k0 cot[k0(x− L)]. (5)
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Due to the unbroken-SUSY condition the ground-state wavefunction of H(+) is

ψ
(+)
0R2(x) = ψ

(+)∗
0L2 (−x) = A

(+)
0 sin[k0(L− x)], (6)

ψ
(+)
0R1(x) = ψ

(+)∗
0L1 (−x) = B

(+)
0 cosh(κ0x) + i

C
(+)
0

κ0l
sinh(κ0x). (7)

The unbroken-supersymmetry condition is satisfied due to the choice made for the
integration constants xR2, xL2 in equation (3). In the region R1 we find a condition
fixing the value of xR1,

tanh(κ0xR1) = − iC(+)
0

κ0lB
(+)
0

=
k0 cot[k0(L− l)] coth(κ0l) + κ0

k0 cot[k0(L− l)] + κ0 coth(κ0l)
(8)

where in the last step we used ref. [1]. A similar relation applies in L1, thus leading
to the result

xL1 = x∗R1. (9)

Note that in contrast with the real integration constants xR2, xL2, the constants
xR1 and xL1 are complex. Separating both sides of equation (8) into a real and an
imaginary part, we obtain the two equations

sinhX cosh X

cosh2 X cos2 Y + sinh2 X sin2 Y
=

Nr

D
(10)

sin Y cosY

cosh2 X cos2 Y + sinh2 X sin2 Y
=

N i

D
(11)

where we have used the decompositions κ0 = s0 + it0, xR1 = xr
R1 + ixi

R1, κ0xR1 =
X + iY , implying that

X = s0x
r
R1 − t0x

i
R1 Y = t0x

r
R1 + s0x

i
R1 (12)

and we have defined

Nr = {−s2
0 cos[2k0(L− l)] + t20} sinh(2s0l) + k0s0 sin[2k0(L− l)] cosh(2s0l) (13)

N i = {s2
0 − t20 cos[2k0(L− l)]} sin(2t0l)− k0t0 sin[2k0(L− l)] cos(2t0l) (14)

D = {−s2
0 cos[2k0(L− l)] + t20} cosh(2s0l) + {s2

0 − t20 cos[2k0(L− l)]} cos(2t0l)
+ k0 sin[2k0(L− l)][s0 sinh(2s0l) + t0 sin(2t0l)]. (15)

Equations (10) and (11), when solved numerically, furnish the values of both the
parameters xr

R1 and xi
R1. One may also observe that the resulting superpoten-

tial W (−x) = −W ∗(x) and partner potential V (−)(−x) = V (−)∗(x) are PT -
antisymmetric and PT -symmetric, respectively.
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2.2 Eigenfunctions in the partner potential

On exploiting the SUSY intertwining relations, the eigenfunctions ψ
(−)
n (x), n = 0,

1, 2, . . . , of H(−) can be obtained by acting with A on ψ
(+)
n+1(x), subject to the

preservation of the boundary and continuity conditions

ψ
(−)
nL2(−L) = 0 ψ

(−)
nR2(L) = 0 (16)

ψ
(−)
nL2(−l) = ψ

(−)
nL1(−l) ∂xψ

(−)
nL2(−l) = ∂xψ

(−)
nL1(−l) (17)

ψ
(−)
nL1(0) = ψ

(−)
nR1(0) ∂xψ

(−)
nL1(0) = ∂xψ

(−)
nR1(0) (18)

ψ
(−)
nR1(l) = ψ

(−)
nR2(l) ∂xψ

(−)
nR1(l) = ∂xψ

(−)
nR2(l). (19)

Application of A leads to the forms

ψ
(−)
nL2(x) = C

(−)
nL2 A

(+)∗
n+1 sin[kn+1(L + x)]

× {kn+1 cot[kn+1(L + x)]− k0 cot[k0(L + x)]} (20)

ψ
(−)
nL1(x) = C

(−)
nL1 B

(+)
n+1 sinh(κ∗n+1x){κ∗n+1 − κ∗0 tanh[κ∗0(x + x∗R1)] coth(κ∗n+1x)}

+ C
(−)
nL1

iC(+)
n+1

κ∗n+1l
sinh(κ∗n+1x)

× {κ∗n+1 coth(κ∗n+1x)− κ∗0 tanh[κ∗0(x + x∗R1)]} (21)

ψ
(−)
nR1(x) = C

(−)
nR1 B

(+)
n+1 sinh(κn+1x){κn+1 − κ0 tanh[κ0(x− xR1)] coth(κn+1x)}

+ C
(−)
nR1

iC(+)
n+1

κn+1l
sinh(κn+1x)

× {κn+1 coth(κn+1x)− κ0 tanh[κ0(x− xR1)]} (22)

ψ
(−)
nR2(x) = C

(−)
nR2 A

(+)
n+1 sin[kn+1(L− x)]

× {−kn+1 cot[kn+1(L− x)] + k0 cot[k0(L− x)]} (23)

where C
(−)
nL2, C

(−)
nL1, C

(−)
nR1, C

(−)
nR2 denote some complex constants and equation (9)

has been used. Boundary conditions (16) are satisfied. It remains to impose the
continuity conditions (17) – (19).

Let us first match the regions L1 and R1 at x = 0. Since equation (8) implies
two constraints

κ0 tanh(κ0xR1) = −κ∗0 tanh(κ∗0x
∗
R1), (24)

κ∗2n+1 − κ2
n+1 = κ∗20 − κ2

0 = −2i g, (25)

the continuity conditions (18) yield the two relations which are mutually compatible
and lead to the condition

C
(−)
nR1 = C

(−)
nL1. (26)

Considering next the matching between R1 and R2 at x = l, we obtain from
equation (19) the two conditions

C
(−)
nR1{kn+1 cot[kn+1(L− l)] + κ0 tanh[κ0(l − xR1)]}
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= C
(−)
nR2{kn+1 cot[kn+1(L− l)]− k0 cot[k0(L− l)]} (27)

C
(−)
nR1

(
κ2

n+1 − κ2
0 + κ0 tanh[κ0(l − xR1)]{kn+1 cot[kn+1(L− l)]

+ κ0 tanh[κ0(l − xR1)]}
)

= C
(−)
nR2

(
k2
0 − k2

n+1 − k0 cot[k0(L− l)]{kn+1 cot[kn+1(L− l)]

− k0 cot[k0(L− l)]}
)

(28)

after making use of equations of ref. [1] to eliminate A
(+)
n+1, B

(+)
n+1 and C

(+)
n+1. Equa-

tions (27) and (28) both yield the same result

C
(−)
nR1 = C

(−)
nR2 (29)

due to the two relations

κ0 tanh[κ0(l − xR1)] = −k0 cot[k0(L− l)] (30)

and
κ2

n+1 − κ2
0 = k2

0 − k2
n+1 (31)

deriving from (8).
Since a result similar to (29) applies at the interface between regions L2 and

L1, we conclude that the partner potential eigenfunctions are given by equations
(20) – (23) with

C
(−)
nL2 = C

(−)
nL1 = C

(−)
nR1 = C

(−)
nR2 ≡ C(−)

n . (32)

Such eigenfunctions are PT -symmetric provided we choose C
(−)
n imaginary:

C(−)∗
n = −C(−)

n . (33)

3 Discontinuities in the partner potential V (−)(x)

In subsection 2.1, we have constructed the SUSY partner V (−)(x) of a piece-
wise potential with three discontinuities at x = −l, 0 and l. We may now ask the
following question: does the former have the same discontinuities as the latter or
could the discontinuity number decrease? We plan to prove here that the second
alternative can be ruled out.

For such a purpose, we will examine successively under which conditions V (−)(x)
could be continuous at x = l or at x = 0 and we will show that such restrictions
would not be compatible with some relations deriving from our unbroken-SUSY
assumption. Observe that we do not have to study continuity at x = −l sepa-
rately, since V (−)(x) being PT -symmetric must be simultaneously continuous or
discontinuous at x = −l and x = l.
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Let us start with the point x = l. Matching there V
(−)
R1 (x) and V

(−)
R2 (x), given

in equations (2) and (4), respectively, leads to the relation

−2κ2
0 sech2[κ0(l − xR1)] + ig = 2k2

0 csc2[k0(L− l)]. (34)

On using (30) and some simple trigonometric identities, such a relation can be
transformed into k2

0 = −κ2
0 + 1

2 ig, which manifestly contradicts our definition of κ.
Hence continuity of V (−)(x) at x = l is ruled out.

Consider next the point x = 0. On equating V
(−)
R1 (0) with V

(−)
L1 (0) and employing

(2) and (9), we obtain the condition

−2κ2
0 sech2(κ0xR1) + ig = −2κ∗20 sech2(κ∗0x

∗
R1)− ig. (35)

Equation (8) then yields the relation −κ2
0 + 1

2 ig = −κ∗20 − 1
2 ig, which contradicts

the definition of κ again. Continuity of V (−)(x) at x = 0 is therefore excluded too.
We conclude that under the simplest assumption of unbroken SUSY with a

factorization energy equal to the ground-state energy of H(+), the partner potential
V (−)(x) has the same three discontinuities at x = −l, 0 and l as V (+)(x).

We also observe that the SUSY partners H(±) may remain both non-Hermitian
and PT -symmetric. Charge operator C [6] may be constructed in the specific form
which differs from the unit operator mostly in a finite-dimensional subspace of the
Hilbert space [7]. This is one of the most important merits of all the square-well
models with L < ∞. It seems to open a new inspiration for a direct physical
applicability of non-Hermitian models whenever their spectrum remains real.
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