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I. A coupling of channels?

It’s always been there!

Just recollect:
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(a) Bender’s PT symmetric potentials

V (x) = Vsymm(x) + i Vantisymm(x),

V (example)
symm (x) = ω2x2 + λ2x4,

V
(example)
antisymm (x) = g x3

in HO basis |n,±〉

H =




S B

−BT L




, P =




I 0

0 −I




channels, decoupled iff g → 0.
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(b) relativistic Sakata - Taketani:

H =




0 K

I 0




, P =




0 I

I 0




in fixed-frame evolution:

H




x

y




= E




x

y




put x = E y and reduce to K y = E2 y

require E2 > 0, define E± = ±
√

E2

and rotate to the FV channels.
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II. Toy model with two coupled

channels
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(a) Hamiltonian:

H(kinetic) =




− d2

dx2 0

0 − d2

dx2




,

H(interaction) =




Va(x) Wb(x)

Wa(x) Vb(x)




.

(b) its θ−pseudo-Hermiticity:

θ = θ† =




0 P

P 0




= θ−1
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(c) potentials [x ∈ (−1, 0)]:

Im Wa(x) = X > 0,

Im Wb(x) = Y > 0,

Im Va(x) = Im Vb(x) = Z,

(d) spin-like (σ = ±1) symmetry:

Ω =




0 ω−1

ω 0




, ω =

√√√√√√√√
X

Y
> 0.

(e) solvable (details see below)

(f) physical (details see below)
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(g) simple in a modified Dirac’s notation

H|E, σ〉 = E|E, σ〉, Ω |E, σ〉 = σ |E, σ〉

〈〈E, σ|H = E〈〈E, σ|, 〈〈E, σ|Ω = σ〈〈E, σ|

biog. : 0 = 〈〈E′, σ′|E, σ〉 ×





(E′ − E)

(σ′ − σ)

cpl. : I =
∑

E, σ
|E, σ〉 1

〈〈E, σ|E, σ〉 〈〈E, σ|

sp. : H =
∑

E, σ
|E, σ〉 E

〈〈E, σ|E, σ〉〈〈E, σ|

Ω =
∑

E, σ
|E, σ〉 σ

〈〈E, σ|E, σ〉〈〈E, σ|
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III. Key problem:

Shall we be able to introduce the

SGH metric?
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Subsummary:

Introducing a “physical”’ metric?

Perhaps only too easily!

The sleepers during the next two screens

will be also given the message

by the next speaker.
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(a) cc metric Θ for students: 2 × 2:

H →




−T B

−B T




, Θ =




a b

b d




ΘH = HTΘ =⇒ 2bT = −B(a + d)

E ∈ IR ⇐⇒ |T | ≥ |B|, B = T sin α

θ1,2 > 0 ⇐⇒ b 6= 0 6= a + d = 2Z

and for a = Z(1 + ξ), d = Z(1− ξ),

1 >
√

ξ2 + sin2 α.

We have an interval of ξ < cos α (!)
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(b) biorthogonal “brabraket” basis:

〈〈n|H = 〈〈n|En, H |n〉 = En |n〉

+ the Mostafazadeh’s universal formula:

Θ = Σ |n〉〉 sn 〈〈n| , sk > 0 .

KG cc = direct sum of 2× 2 matrices:

H =




0 B

I 0




, Θ =




a b

b d




,

gives θ1,2 > 0 for all d = aE2 > 0,

i.e., full intervals of |bn| < |anEn|

(recommended choice: a = 1/E).
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IV. Another subsummary:

Square wells with x ∈ (−1, 1)?

V (x) = V(Z)(x) = −i Z sign(x)?

Why at all?
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(a) = ODE with constant coefficients:

− d2

dx2 ϕ(m)(x) +
K∑

j=1
VZ(m,j)

(x) ϕ(j)(x) =

= Eϕ(m)(x), m = 1, 2, . . . , K

= solvable by an ansatz for ϕ(m)(x)

=





C
(m)
L sin κL(x + 1), x < 0,

C
(m)
R sin κR(−x + 1), x > 0

= giving Z
(m)
(eff )(K) as eigenvalues of




Z(1,1) Z(1,2) . . . Z(1,K)

Z(2,1) Z(2,2) . . . Z(2,K)

... . . . . . . ...

Z(K,1) Z(K,2) . . . Z(K,K)




.
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(b) quantized easily:

= ansatz → κR = s + it = κ∗L, s > 0,

→ t = tfirst curve(s) = Z
(m)
(eff )(K)/(2s)

plus matching in the origin:

→ κL cotan κL = −κR cotan κR

gives the second, “universal” curve

t = texact(s) with implicit definition

2s sin 2s + 2t sinh 2t = 0

→ energies via intersections,

En = s2
n − t2n, n = 0, 1, . . . .
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V. Technicalities are over at last.

Now there come THE IDEAS!

16



(a) the first idea: relax P = P†

pattern: if H† = RH R−1 and R 6= R†,

we have the symmetry,

H S = SH, S = [R−1]†R.

Let’s choose R−1 = R† with S = R2 and

R =




0 . . . 0 0 P

P 0 . . . 0 0

0 P 0 . . . 0

... . . . . . . . . . ...

0 . . . 0 P 0




at any K.
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(b) the second idea: take more:

R = R(K,L) = P r(K,L) such that

r(K,L+1) = r(K,1) r(K,L) , L = 1, 2, . . . .


r(K,L)



K

= I , r(K,K−L) =

r(K,L)



†
.

(c) necessity: adapt H to R:

A = r(K,K−L) ·AT · r(K,L)

= solve a finite set of equations

(see the K = 2 result above)
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VI. Let us move now to

THREE channels, with
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R(3,1) =




0 0 P

P 0 0

0 P 0




= R
†
(3,2) = R−1

(3,2),

R(3,2) =




0 P 0

0 0 P

P 0 0




= R
†
(3,1) = R−1

(3,1).

giving the unique

A(interaction) =




Z X X

X Z X

X X Z




, L = 1, 2
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and solutions with the ‘first curve’

t = t(σ)(s) =
1

2s
Zeff (σ), σ = 1, 2, 3

Zeff (1) = Z+2 X and Zeff (2, 3) = Z−X

and with the cc coefficients


C

(a)
(1) , C

(b)
(1), C

(c)
(1)


 ∼ (1, 1, 1)


C

(a)
(2) , C

(b)
(2), C

(c)
(2)


 ∼ (1,−1, 0)


C

(a)
(3) , C

(b)
(3), C

(c)
(3)


 ∼ (1, 1,−2) .

The energies stay real in the 2D domain

Y − Zcrit ≤ Z ≤ Zcrit − 2Y.

[vertices (0,±4.475) and (2.98,−1.49)].
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VII. A bit of a technical interlude:

Numerics relevant!

Return, quickly, to K = 1!!
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(a) weakly non-Hermitian regime:

s = sn =
(n + 1)π

2
+ τ

Qn

2
, τ = (−1)n

→ solvable by iterations:

the first small quantity % ≡ 1
L = 1

(n+1)π

the second one α =
2 Zeff (σ)

L or β = α%

→ a “generalized continued fraction”

Q = arcsin


2t

%

1 + τ Q %
sinh 2t


 ,

where 2t =
α

1 + τ Q %
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(b) intermediate non-Hermiticities:

→ ad hoc perturbation theory:

→ arcsin(x) = x + 1
6x

3 + 3
40x

5 + . . .

Q = Q(α, β) = αβ Ω(α, β),

→ Ω(α, β) = 1 + c10 α2 + c01 β2+

+c20 α4 + c11 α2β2 + c02 β4 +O(α6)

→ equation re-arranged:

[1 + τ β2Ω(α, β)] arcsinh(Λ) = α

Λ = [1 + τ β2Ω(α, β)]2 1
β sin[αβ Ω(α, β)]
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(c) formulae:

→ leading order relation

0 =

−1

6 + c10 + c01%2 + 3τ%2

 α3 + . . . .

determines the first two coefficients,

c10 = 1
6, c01 = −3τ ,

the next-order O
(
α5

)
gives

c20 = 1
120, c11 = 1−8τ

6 , c02 = 15

and the 1 + O
(
α4

)
formula

Qn =
4 Z2

eff

(n + 1)3π3+

+
8 Z4

eff

3 (n + 1)5π5



1 +

18 (−1)n+1

(n + 1)2π2



.
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VIII.

FOUR channels
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K = 4 warning: R(4,2) is Hermitian,

mere six constraints upon 16 couplings.

Not enough symmetry for us.

Unique coupling-matrix left,

A(interaction) =




Z U D U

L Z L D

D U Z U

L D L Z




, L = 1, 3.
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solution :

Four shifts of the effective Z,

[−D,−D,D + 2
√

UL, D − 2
√

UL]

with respective eigenvectors

{1, 0,−1, 0} , {0, 1, 0,−1} ,



U,±

√
UL, U,±

√
UL



 .
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remark:

from the pseudo-parity

r(permuted) =




0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0




repartitioned model

A
(permuted)
(interaction) =




Z D U U

D Z U U

L L Z D

L L D Z




, L = 1, 3.
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IX.

FIVE channels
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r(5,1) =




0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




, . . . ,

all lead to the same

A(interaction) =




Z X D D X

X Z X D D

D X Z X D

D D X Z X

X D D X Z




.
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→ exceptional eigenvalue F0 = 2 D+2 X

giving eigenvector {1, 1, 1, 1, 1}

→ the reduced Z = 0 matrix A has the

pair of the twice degenerate eigenvalues,

F± =
1

2


−D −X ±

√
5 (−D + X)




with the two respective eigenvectors



1∓

√
5,−1±

√
5, 2, 0,−2







1∓

√
5,−2, 0, 2,−1±

√
5



 .
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X. Another important interlude

concerning the domain where the

energies remain real.
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(a) a numerical algorithm:

Q

2

∣∣∣∣∣∣∣∣∣crit
≡ ε(tcrit) = π − Zcrit

2tcrit
,

sin [2 ε(t)] =
t sinh 2t

π − ε(t)
,

ε(lower)(t) = π/4 and ε(upper)(t) = 0.

∂tε(tcrit) =
Zcrit

2t2crit
,

∂tε(t) =
sinh 2t + 2t cosh 2t

2 [π − ε(t)] cos 2ε(t)− sin 2ε(t)

→ tcrit ∈ (0.839393459, 0.839393461),

→ scrit ∈ (2.665799044, 2.665799069),

→ Ecrit ∈ (6.401903165, 6.401903294).
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Table 1:

iteration Z
(lower)
crit Z

(upper)
crit

N

0 4.299 4.663

2 4.4614 4.4857

4 4.47431 4.47601

6 4.475239 4.475357

8 4.47530381 4.4753119

10 4.475308262 4.475308823

12 4.475308560 4.475308614
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XI.

SIX channels
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L = 3

21 free parameters

Hermitian R and a weak symmetry,

skipped
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L = 1 or L = 5:

r
(permuted)
(6,1) =




0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 0 0

1 0 0 0 0 0




,
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A = asymmetric:

A
(permuted)
(interaction) =




Z Y G B F B

X Z C F C G

F B Z Y G B

C G X Z C F

G B F B Z Y

C F C G X Z




.

eigenvalues = roots of quadratic equations

two = non-degenerate

two = doubly degenerate
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L = 2 or L = 4:

r
(permuted)
(6,2) =




0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0




,
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A = symmetric:

A
(permuted)
(interaction) =




Z X X C D G

X Z X G C D

X X Z D G C

C G D A B B

D C G B A B

G D C B B A




.

eigenvalues = roots of quadratic equations

two = non-degenerate

two = doubly degenerate
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XII.

2M − 1 channels with M = 4 etc
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M = 4: four free parameters at all L:

A(interaction) =




Z X Y D D Y X

X Z X Y D D Y

Y X Z X Y D D

D Y X Z X Y D

D D Y X Z X Y

Y D D Y X Z X

X Y D D Y X Z




.

Cardano formulae.
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XIII.

2M channels with M = 4 etc
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37 free parameters for (2M,L) = (8, 4)

(29 in pairs),

16 free parameters for (2M,L) = (8, 2)

(all in quadruplets),

8 free parameters for (2M, L) = (8, 1) etc,

(all in octuuplets).
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XIV. The summary of the talk:
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(1) Our particular recipe P → R allowing

finite rotations proved feasible.

(2) Models may be useful as carrying new

nontrivial symmetries.

(3) Coupled-channel Hamiltonians shown

equally appealing within PTSQM as they

were in Hermitian models.

(4) One feels encouraged to search for some

further extensions of “quantum practice”

in quasi-Hermitian directions.
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