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This means that

our H must have a factorized symmetry,

H S = SH, S =
(
R−1

)†
R

and we have two possibilities:

• either S = I (i.e., R = R†), pseudo-Hermiticity

• or S 6= I (= today: “symmetry factorization”, SF).
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PLAN OF THE TALK

• I. Introduction

• II. Symmetry-factorization models on curves

• III. Symmetry-factorization models on an interval

• IV. Summary
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PLAN OF THE TALK

• I. Introduction (2 × 2 example)

• II. SF models on curves (“toboggans”)

• III. SF models on an interval (coupled square wells)

• IV. Summary (SFQM )
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sleepers: partly accessible ON WEB and/or published:

• I. quant-ph/0601048 (PLA)

• II. quant-ph/0502041 (PLA), .../0606166 (subm.)

• III. quant-ph/0511194 (JPA), .../0605209 (JPA, ip)

• IV. (CJP, ip)
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INTRODUCTION

With H|n〉 = En|n〉 and 〈〈n|H = En〈〈n|, quasi-Hermiticity

H† = Θ H Θ−1, I 6= Θ = Θ† > 0.

and the spectral representation of the Hamiltonian

H =
∑
n
|n〉 En

〈〈n|n〉 〈〈n|

lead to the multiparametric formula giving “physics”,

Θ =
∑
n
|n〉〉 θn 〈〈n| , θn > 0.
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Example – find metric Θ for a 2 × 2 Hamiltonian

H =




−T B

−B T




, Θ =




a b

b d




ΘH = HTΘ =⇒ 2bT = −B(a + d)

E ∈ IR ⇐⇒ |T | ≥ |B|, B = T sin α

θ1,2 > 0 ⇐⇒ b 6= 0 6= a + d = 2Z.
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ambiguity:

for a = Z(1 + ξ), d = Z(1− ξ) we have an interval,

1 >
√
ξ2 + sin2 α, ξ < cos α.

In 2D with biorthogonal “brabraket” basis,

〈〈n|H = 〈〈n|En, H |n〉 = En |n〉

such a freedom is compatible with the universal formula

Θ = Σ |n〉〉 sn 〈〈n| , sk > 0 .
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MODELS ON COMPLEX CONTOURS C(N)
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FIRST STEP: SPIKED HO

Miloslav Znojil,

PT symmetric harmonic oscillators

Phys. Lett. A 259 (1999) 220 - 3.
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Innovation: PT-symmetric paths C(N) N-times encircle x = 0,


− d2

dx2
+

`(` + 1)

x2
+ x2


 ψ(x) = E ψ(x)

to be studied in the bound-state and scattering regime
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1. along straight contour

C(0) = {x |x = t− i ε, t ∈ IR}

“twice as many” bound-state levels

E = En,`,± = 4n + 2± 2α(`)
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2. along loops

C(N) = D(PTSQM, tobogganic)
(ε,N)

on multisheeted Riemann surfaces

with, say, ϕ ∈ (−(N + 1)π, Nπ) in

%(ϕ,N) =

√√√√√1 + tan2 ϕ + π/2

2N + 1

C(N) =
{
x = ε %(ϕ,N) ei ϕ , ε > 0

}
.
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.
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Figure 1: Complex trajectory C(2) of the harmonic-oscillator toboggan
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What is PT −symmetry in the presence of branch points?

ambiguity:

(
C(N)

)†
= D(PTSQM, tobogganic)

(ε′,N) , ε′ = ε · e±iπ .

in both cases, rotation along Riemann surface.
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SECOND STEP: AHOs in QES regime

Miloslav Znojil (quant-ph/0502041):

PT-symmetric quantum toboggans

Phys. Lett. A 342 (2005) 36-47.
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− d2

dx2
+ V (x)


 ψ(x) = E ψ(x)

Re V (x) = +Re V (−x) and Im V (x) = −Im V (−x).

ψ(±Re L + i Im L) = 0 , |L| À 1 or |L| → ∞ .

V (x) = x10 + asymptotically smaller terms

ψ(x) = e−x6/6+asymptotically smaller terms
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reparametrized

ψ(x) = exp


−1

6
%6 cos 6ϕ + asymptotically less relevant terms


 ,
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Figure 2: Domain of allowed asymptotics of decadic-oscillator contours
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closed formulae

Ω(first right) =


−π

2
+

π

12
,−π

2
+

3π

12


 ,

Ω(first left) =


−π

2
− π

12
,−π

2
− 3π

12


 ,

Ω(third right) =


−π

2
+

5π

12
,−π

2
+

7π

12


 , . . .

. . . Ω(fifth left) =


−π

2
− 9π

12
,−π

2
− 11π

12


 .
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PT −symmetric transformations changing β

Initial PT −symmetric model


− d2

dx2
− (ix)2 + λW (ix)


 ψ(x) = E(λ) ψ(x) , W (ix) =

∑

β
gβ(ix)β .

change variables,

ix = (iy)α , ψ(x) = y% ϕ(y).

at α > 0 we have

i dx = iααyα−1 dy,
(iy)1−α

α

d

dy
=

d

dx
.
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“new” Schrödinger equation

y1−α d

dy
y1−α d

dy
y% ϕ(y)+i2αα2

[
−(iy)2α + λW [(iy)α]− E(λ)

]
y% ϕ(y) = 0 .

Its first term is a sum

y1−α d

dy
y1−α d

dy
y[(α−1)/2] ϕ(y) = y2+%−2α d2

dy2
ϕ(y)+%(%−α)y%−2α ϕ(y) , % =

α− 1

2

Thus, the new Schrödinger equation is

− d2

dy2
ϕ(y)+

α2 − 1

4y2
ϕ(y)+(iy)2α−2α2

[
−(iy)2α + λW [(iy)α]− E(λ)

]
ϕ(y) = 0 .
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Quasi-exact toboggans

− d2

dx2
ϕ(x)+

`(` + 1)

x2
ϕ(x)+

[
x4q+2 + g4q x4q + . . . + g2 x2

]
ϕ(x) = E ϕ(x) .

Vf(x) = x6 + f4 x4 + f2 x2 + f−2 x−2,

Vg(y) = −(iy)2 + i g1 y + g−1 (iy)−1 + g−2 (iy)−2,

Vh(y) = −(iy)2/3+h−2/3 (iy)−2/3+h−4/3 (iy)−4/3+h−2 (iy)−2.

mutually interrelated by the map () with trivial α = 1 for Vf

and nontrivial α = 1/2 for Vg or α = 1/3 for Vh.
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.

SUB-SUMMARY:

changes of variables modify the size

of the angle of the “rotation” R
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THIRD STEP: PERTURBED HO

harmonic oscillators living on a complex curve:

Miloslav Znojil (quant-ph/0606166):

Spiked harmonic quantum toboggans
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Polynomially perturbed harmonic oscillator (Buslaev and

Grecchi)

V (x) = x2 +
∑

β
g(β) x

β (1)

may live on topologically nontrivial trajectories C(N)

Two independent asymptotically exponential solutions,

ψ(x) ≈ ψ(±)(x) = e±x2/2 , |x| À 1 (2)

= multivalued analytic functions. A ray xθ = %ei θ chosen.
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“physical” [i.e., asymptotically vanishing ψ(phys)(x)] and

“unphysical” [i.e., asymptotically “exploding” ψ(unphys)(x)],

ψ(−)(x) =





ψ(phys)(x), kπ + θ ∈
(
−π

4 ,
π
4

)
,

ψ(unphys)(x), kπ + θ ∈
(

π
4 ,

3π
4

)
, k ∈ ZZ

and, less often,

ψ(+)(x) =





ψ(unphys)(x), kπ + θ ∈
(
−π

4 ,
π
4

)
,

ψ(phys)(x), kπ + θ ∈
(

π
4 ,

3π
4

)
, k ∈ ZZ .
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Riemann-surface values of the “tobogganic trajectories”

D(PTSQM, tobogganic)
(ε,N) =

{
x = ε %(ϕ,N) ei ϕ | ϕ ∈ (−(N + 1)π, Nπ)

}

%(ϕ,N) =

√√√√√1 + tan2 ϕ + π/2

2N + 1
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What is PT −symmetry in the presence of branch points?

.

parity-like operators P (±) : x → x · exp(±iπ) (continuous)

map Kn into neighboring Riemann sheets Kn±1.

two eligible rotation-type innovations T (±)

same for P (±)T (±) and

(
C(N)

)†
= D(PTSQM, tobogganic)

(ε′,N) , ε′ = ε · e±iπ .
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Bound states along the toboggans

Differential Schrödinger equation

H(PT ) ψ(x) = E ψ(x)

with, traditionally, Dirichlet

ψ
(
% · ei θ

)
= 0, % À 1

somewhere, traditionally, inside the wedges,

θ + ki,f π ∈
(
−π

4
,
π

4

)
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defines bound states, often with real spectra.

For toboggans we selected kf = 0 and ki = 1 at N = 0,

kf = −1 and ki = 2 at N = 1,

kf = −2 and ki = 3 at N = 2 etc.
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Scattering along the toboggans

.

independent solutions become equally large and oscillate

not only for E > 0 when V (x) = 0 at % →∞ but also

for any potential including our x2−dominated one.

39



“in” and “out” wedge boundaries are

A(N)
(L) → % ei θin, θin = −(N + 3/4) π,

A(N)
(L) → % ei θout, θout = (N − 1/4) π,

A(N)
(U) → % ei θin, θin = −(N + 5/4) π,

A(N)
(U) → % ei θout, θout = (N + 1/4) π .
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We require the following incoming-beam normalization,

ψ
(
% · ei θin

)
= ψ(i)(x) + B ψ(r)(x), % À 1, θin = fixed

and outcoming-beam normalization,

ψ
(
% · ei θout

)
= (1 + F ) ψ(t)(x), % À 1, θout = fixed

with incident and reflected waves ψ(i,r)(x) ≈ e±i%2/2.

B = “backward scattering” and F = “forward scattering”

41



Exactly solvable model

Schrödinger differential equation


− d2

dx2
+

α2 − 1/4

x2
+ x2


 ψ(x) = E ψ(x), α = ` +

1

2
,

set x2 = −ir along the first nontrivial scattering path A(0)
(L).

“in” branch with r ¿ −1 and “out” branch with r À +1

χ(α)(r) = r
1
4+α

2 eir/2
1F1


α + 1− µ

2
, α + 1;−ir


 , E = 2µ

linearly independent partner χ(−α)(r) (α 6= n ∈ IN).
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|r| À 1 estimate,

r
1
4+α

2 χ(α)(r) ≈ eir/2 rµ/2 exp [−i π (α + 1) /4]

Γ [(α + 1 + µ)/2]
+

+e−ir/2 r−µ/2 exp [+i π (α + 1) /4]

Γ [(α + 1− µ)/2]
.

“rigid” at α > 0, µ = E/2 > 0 and |x| = |
√
(r)| À 1

ψin,out(x) ≈ r−1/4+(α+µ)/2 eir/2 exp [−i π (−α + 1) /4]

Γ [(−α + 1 + µ)/2]
+ ... .

Note that ψ
(Coul)
out (r) becomes “distorted” by power-law as well,

sin(κr + const) → sin(κr + const · log r + const) .
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Toboggans in potentials with more spikes

two branch points (say, in x = ±1)

V (x) = x2 +
G

(x− 1)2
+

G∗

(x + 1)2

Sub-summary of the tobogganic study

Quantum particle is assumed moving along PT −symmetric

“toboggan” paths which N−times encircle the branch point in

the origin. Both bound states and scattering.
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MODELS ON AN INTERVAL
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FIRST STEP: K COUPLED SQUARE WELLS
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RECOLLECT our main idea: work with non-metric,

P 6= P†

pattern: if H† = RH R−1 and R 6= R†,

we have the symmetry,

H S = SH, S = [R−1]†R.
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Let’s choose R−1 = R† with S = R2 and

R =




0 . . . 0 0 P

P 0 . . . 0 0

0 P 0 . . . 0

... . . . . . . . . . ...

0 . . . 0 P 0




at any K.
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.

Toy model with two coupled channels

49



(a) Hamiltonian:

H(kinetic) =




− d2

dx2 0

0 − d2

dx2




,

H(interaction) =




Va(x) Wb(x)

Wa(x) Vb(x)




.

(b) its θ−pseudo-Hermiticity:

θ = θ† =




0 P

P 0




= θ−1
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(c) potentials [x ∈ (−1, 0)]:

Im Wa(x) = X > 0,

Im Wb(x) = Y > 0,

Im Va(x) = Im Vb(x) = Z,

(d) spin-like (σ = ±1) symmetry:

Ω =




0 ω−1

ω 0




, ω =

√√√√√X

Y
> 0.

(e) solvable and physical
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(f) simple in a modified Dirac’s notation

H|E, σ〉 = E|E, σ〉, Ω |E, σ〉 = σ |E, σ〉

〈〈E, σ|H = E〈〈E, σ|, 〈〈E, σ|Ω = σ〈〈E, σ|

biog. : 0 = 〈〈E ′, σ′|E, σ〉 ×





(E ′ − E)

(σ′ − σ)

cpl. : I =
∑

E, σ
|E, σ〉 1

〈〈E, σ|E, σ〉 〈〈E, σ|

sp. : H =
∑

E, σ
|E, σ〉 E

〈〈E, σ|E, σ〉〈〈E, σ|

Ω =
∑

E, σ
|E, σ〉 σ

〈〈E, σ|E, σ〉〈〈E, σ|
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.

FULL MODEL WITH K COUPLED SQUARE

WELLS

V (x) = V(Z)(x) = −i Z sign(x), x ∈ (−1, 1)

STILL HAS ITS MERITS!
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(a) = ODE with constant coefficients:

− d2

dx2
ϕ(m)(x) +

K∑

j=1
VZ(m,j)(x) ϕ(j)(x) =

= Eϕ(m)(x), m = 1, 2, . . . , K

(b) = solvable by an ansatz for ϕ(m)(x)

=





C
(m)
L sin κL(x + 1), x < 0,

C
(m)
R sin κR(−x + 1), x > 0
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(c) = giving Z
(m)
(eff)(K) as eigenvalues of




Z(1,1) Z(1,2) . . . Z(1,K)

Z(2,1) Z(2,2) . . . Z(2,K)

... . . . . . . ...

Z(K,1) Z(K,2) . . . Z(K,K)




.
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(d) quantized easily:

= ansatz → κR = s + it = κ∗L, s > 0,

→ t = tfirst curve(s) = Z
(m)
(eff)(K)/(2s)

plus matching in the origin:

→ κL cotan κL = −κR cotan κR

gives the second, “universal” curve

t = texact(s) with implicit definition

2s sin 2s + 2t sinh 2t = 0
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→ energies via intersections at any K,

En = s2
n − t2n, n = 0, 1, . . . .
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.

Technicalities

58



(a) take generalized parities R = R(K,L) = P r(K,L),

r(K,L+1) = r(K,1) r(K,L) , L = 1, 2, . . . .

[
r(K,L)

]K
= I , r(K,K−L) =

[
r(K,L)

]†
.

(b) adapt H to R:

A = r(K,K−L) ·AT · r(K,L)

59



.

Let us pick up

THREE channels

60



R(3,1) =




0 0 P

P 0 0

0 P 0




= R†
(3,2) = R−1

(3,2),

R(3,2) =




0 P 0

0 0 P

P 0 0




= R†
(3,1) = R−1

(3,1).
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giving the unique

A(interaction) =




Z X X

X Z X

X X Z




, L = 1, 2

62



solutions with the ‘first curve’

t = t(σ)(s) =
1

2s
Zeff(σ), σ = 1, 2, 3

Zeff(1) = Z + 2 X, Zeff(2, 3) = Z −X

(
C

(a)
(1) , C

(b)
(1), C

(c)
(1)

)
∼ (1, 1, 1)

(
C

(a)
(2) , C

(b)
(2), C

(c)
(2)

)
∼ (1,−1, 0)

(
C

(a)
(3) , C

(b)
(3), C

(c)
(3)

)
∼ (1, 1,−2) .

Energies real: Y − Zcrit ≤ Z ≤ Zcrit − 2Y.

[vertices (0,±4.475) and (2.98,−1.49)].
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.

Numerical interlude
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(a) weakly non-Hermitian regime:

s = sn =
(n + 1)π

2
+ τ

Qn

2
, τ = (−1)n

→ solvable by iterations:

the first small quantity % ≡ 1
L = 1

(n+1)π

the second one α =
2 Zeff (σ)

L or β = α%

→ a “generalized continued fraction”

Q = arcsin


2t

%

1 + τ Q %
sinh 2t


 , 2t =

α

1 + τ Q %
.

65



(b) intermediate non-Hermiticities: ad hoc:

→ arcsin(x) = x + 1
6x

3 + 3
40x

5 + . . .

Q = Q(α, β) = αβ Ω(α, β),

→ Ω(α, β) = 1 + c10 α2 + c01 β2+

+c20 α4 + c11 α2β2 + c02 β4 +O(α6)

→ equation re-arranged:

[1 + τ β2Ω(α, β)] arcsinh(Λ) = α

Λ = [1 + τ β2Ω(α, β)]2 1
β sin[αβ Ω(α, β)]
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(c) formulae:

→ leading order relation

0 =
(
−1

6 + c10 + c01%
2 + 3τ%2

)
α3 + . . . .

determines the first two coefficients,

c10 = 1
6, c01 = −3τ ,

the next-order O
(
α5

)
gives

c20 = 1
120, c11 = 1−8τ

6 , c02 = 15
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and the 1 + O
(
α4

)
formula

Qn =
4 Z2

eff

(n + 1)3π3
+

+
8 Z4

eff

3 (n + 1)5π5


1 +

18 (−1)n+1

(n + 1)2π2


 .
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.

FOUR channels

69



K = 4 warning: R(4,2) is Hermitian,

mere six constraints upon 16 couplings.

Not enough symmetry for us.

Unique coupling-matrix left,

A(interaction) =




Z U D U

L Z L D

D U Z U

L D L Z




, L = 1, 3.
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solution :

Four shifts of the effective Z,

[−D,−D,D + 2
√

UL, D − 2
√

UL]

with respective eigenvectors

{1, 0,−1, 0} , {0, 1, 0,−1} ,

{
U,±

√
UL, U,±

√
UL

}
.
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remark:

from the pseudo-parity

r(permuted) =




0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0
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repartitioned model

A
(permuted)
(interaction) =




Z D U U

D Z U U

L L Z D

L L D Z




, L = 1, 3.
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.

FIVE channels

74



r(5,1) =




0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




, . . . ,
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all lead to the same

A(interaction) =




Z X D D X

X Z X D D

D X Z X D

D D X Z X

X D D X Z




.
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→ exceptional eigenvalue F0 = 2 D+2 X giving eigenvector

{1, 1, 1, 1, 1}

→ the reduced Z = 0 matrix A has the pair of the twice

degenerate eigenvalues with 2 respective eigenvectors

F± =
1

2

[
−D −X ±

√
5 (−D + X)

]

{
1∓

√
5,−1±

√
5, 2, 0,−2

}

{
1∓

√
5,−2, 0, 2,−1±

√
5

}
.

77



.

When do the energies remain real?

78



(a) a numerical algorithm:

Q

2

∣∣∣∣∣∣
crit
≡ ε(tcrit) = π − Zcrit

2tcrit
,

sin [2 ε(t)] =
t sinh 2t

π − ε(t)
,

ε(lower)(t) = π/4 and ε(upper)(t) = 0.

∂tε(tcrit) =
Zcrit

2t2crit
,

∂tε(t) =
sinh 2t + 2t cosh 2t

2 [π − ε(t)] cos 2ε(t)− sin 2ε(t)

79



a sample result:

→ tcrit ∈ (0.839393459, 0.839393461),

→ scrit ∈ (2.665799044, 2.665799069),

→ Ecrit ∈ (6.401903165, 6.401903294).
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Table 1:

iteration Z
(lower)
crit Z

(upper)
crit

N

0 4.299 4.663

2 4.4614 4.4857

4 4.47431 4.47601

6 4.475239 4.475357

8 4.47530381 4.4753119

10 4.475308262 4.475308823

12 4.475308560 4.475308614
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.

SIX channels

82



.

L = 3

21 free parameters

Hermitian R and a weak symmetry,

skipped
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L = 1 or L = 5:

r
(permuted)
(6,1) =




0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 0 0

1 0 0 0 0 0




,
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A = asymmetric:

A
(permuted)
(interaction) =




Z Y G B F B

X Z C F C G

F B Z Y G B

C G X Z C F

G B F B Z Y

C F C G X Z




.

eigenvalues = roots of quadratic equations

two = non-degenerate, two = doubly degenerate
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L = 2 or L = 4:

r
(permuted)
(6,2) =




0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0




,
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A = symmetric:

A
(permuted)
(interaction) =




Z X X C D G

X Z X G C D

X X Z D G C

C G D A B B

D C G B A B

G D C B B A




.

eigenvalues = roots of quadratic equations

two = non-degenerate, two = doubly degenerate
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.

2M − 1 channels with M = 4 etc

88



M = 4: four free parameters at all L:

A(interaction) =




Z X Y D D Y X

X Z X Y D D Y

Y X Z X Y D D

D Y X Z X Y D

D D Y X Z X Y

Y D D Y X Z X

X Y D D Y X Z




.

Cardano formulae.
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.

2M channels with M = 4 etc
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37 free parameters for (2M, L) = (8, 4) (29 in pairs),

16 free parameters for (2M, L) = (8, 2) (all in quadruplets),

8 free parameters for (2M,L) = (8, 1) etc, (all in octuplets).
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Summarizing asymmetrically coupled square wells

(1) Recipe P → R allowing finite rotations = feasible.

(2) Models carrying new type of symmetries.

(3) New “quantum practice”, quasi-Hermitian.

92



SECOND STEP: SQUARE WELLS

DISCRETIZED,

so that the REALITY OF SPECTRA

can be proved MORE easily,

by the standard MATRIX TECHNIQUES
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Runge-Kutta recipe

x0 = −1, xk = xk−1 + h = −1 + kh,

h =
2

N
, k = 1, 2, . . . , N

−ψ′′(x) ≈ −ψ(xk+1)− 2 ψ(xk) + ψ(xk−1)

h2
)

ψ(x0) = ψ(xN) = 0
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Sample potentials

V (x) = [V (−x)]∗ , ψ(±1) = 0.

V (x) =





+i Zn x ∈ (−`n,−`n−1),

−i Zn x ∈ (`n−1, `n),

,

n = 1, 2, . . . , q + 1 ,

`0 = 0 < `1 < . . . < `q+1 = 1.
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Equations: original


− d2

dx2
+ V (x)


 ψ(x) = E ψ(x).

and discretized

−ψ(xk+1)− 2 ψ(xk) + ψ(xk−1)

h2

= i sign(xk)Z ψ(xk) + E ψ(xk) .
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The Weigert’s N = 4 matrix model

.



2 + 1
4 i Z −1 0

−1 2 −1

0 −1 2− 1
4 i Z







α0

γ

β0




=
1

4
E




α0

γ

β0




.

easily generalized, (PTO)
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iξ − F −1

−1 iξ − F . . .

. . . . . . −1

−1 iξ − F −1

−1 −F −1

−1 −iξ − F . . .

−1 . . .

. . .
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ψ =




α0

α1

...

αn

γ

βn

...

β0
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Solutions

F = E h2 − 2 and ξ = Z h2

αk = ak + i bk, βk = ak − i bk ≡ α∗k,

αk = (a + ib) Uk


−F + iξ

2


 , k = 0, 1, . . . , n

Uk(cos θ) =
sin(k + 1)θ

sin θ
.
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Conditions

γ = (a + ib) Un+1


−F + iξ

2




= (a − ib) Un+1


−F − iξ

2




F γ = − (a + ib) Un


−F + iξ

2


−

− (a − ib) Un


−F − iξ

2


 .
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Robust solution at F = 0.

Parameter a must vanish for even n = 0, 2, 4, . . . (and we may

normalize b = 1) while b = 0 and a = 1 for the odd n = 1, 3, 5, . . ..

Secular equation in two alternative forms,

Un

(
1
2 i ξ

)− Un

(
1
2 i ξ

)
= 0, n = 2m,

Un

(
1
2 i ξ

)
+ Un

(−1
2 i ξ

)
= 0, n = 2m + 1

satisfied identically at any m = 0, 1, . . .. QED.

E = En+2 = 2/h2 = N 2/2 = 2(n + 2)2
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Generic solutions at F 6= 0.

Un+1

(−F + iξ

2

)
(a + ib) = Un+1

(−F − iξ

2

)
(a − ib)

Tn+1

(−F + iξ

2

)
(a + ib) = −Tn+1

(−F − iξ

2

)
(a − ib)

define (a, b) = (a0, b0) and their ratio,

Tn+1

(−F + iξ

2

)
Un+1

(−F − iξ

2

)
+Tn+1

(−F − iξ

2

)
Un+1

(−F + iξ

2

)
= 0.

=⇒ the energies F as functions of the couplings ξ.
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Re-parametrization

−F + iξ

2
= cos ϕ, Re ϕ = α, Im ϕ = β

i.e.,

1

2
F = − cos α cosh β,

1

2
ξ = − sin α sinh β

and, in the opposite direction,

cos α = − 1

2 cosh β
F,

sinh β =
1

2
√

2

√
F 2 + ξ2 − 4 +

√
(F 2 + ξ2 − 4)2 + 16 ξ2.
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gives trigonometric secular equation

Re
sin[(n + 1)ϕ] cos[(n + 1)ϕ∗]

sin ϕ
= 0.
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Inspection.

In the domain with negative β < 0, roots

α ∈ (0, π/2) at the negative F < 0, and

α ∈ (π/2, π) at the positive F > 0.

The first roots in closed form,

F0 = 0, F± = ±√2− ξ2, n = 0,

F0 = 0, F±,± = ±
√

2− ξ2 ±√1− 4ξ2, n = 1

etc. Critical values Z = Z(crit)(N) (PTO).
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0

1

2

3

4

5

N=3 N=5 N=7 N=9 ...
N >> 1

exact
limit

Z(crit)

Figure 3: Numerical convergence of the critical couplings

108



ALTERNATIVE OPTION:

Even dimensions N − 1 = 2n + 2:



iξ − F −1

−1 iξ − F . . .

. . . . . . −1

−1 iξ − F −1

−1 −iξ − F . . .

. . . . . . −1

−1 −iξ − F







α0

α1

...

αn

α∗n

...

α∗0




= 0.
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PARALLELISM.

Whenever the PT −symmetry remains unbroken, closed solu-

tion follows from the matching conditions

(a + ib) Un+1

(−F + iξ

2

)
= (a − ib) Un

(−F − iξ

2

)
.

and

Un

(−F + iξ

2

)
Un

(−F − iξ

2

)
= Un+1

(−F + iξ

2

)
Un+1

(−F − iξ

2

)
.
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Proof.

subproblem




−1 iξ − F −1 0

0 −1 −iξ − F −1







Un−1
(−F+iξ

2

)
(a + ib)

Un

(−F+iξ
2

)
(a + ib)

Un

(−F−iξ
2

)
(a − ib)

Un−1
(−F−iξ

2

)
(a − ib)




= 0

induces just one matching, αn+1 = α∗n. QED.
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MODELS WITH MORE MATCHING POINTS

` = 1/2 and N = 6 – analytic tractability

V (x) =





+i Z

0

−i Z

for x ∈





(−1,−1
2

)
,

(−1
2 ,

1
2

)
,

(
1
2 , 1

)
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iξ − F −1

−1 −F −1

−1 −F −1

−1 −F −1

−1 −iξ − F







α0

γ0

γ

γ∗0

α∗0




= 0.

113



SUPPRESSING THE NON-HERMITICITY USING ` = 5/8

V (x) =





+i Z

0

−i Z

for x ∈





(−1,−5
8

)
,

(−5
8 ,

5
8

)
,

(
5
8 , 1

)
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iξ − F −1

−1 −F −1

−1 −F −1

−1 −F −1

−1 −F −1

−1 −F −1

−1 −iξ − F







α0

γ1

γ0

γ

γ∗0

γ∗1

α∗0




= 0.

secular determinant

D =
[−F 6 − F 4

(
ξ2 − 6

)
+ F 2

(
4 ξ2 − 10

)− 3 ξ2 + 4
]
F . (3)
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ξ

I

II

III

V

VI

VII

IV

F

-1.5

-1

-0.5

0

0.5

1

1.5

0.5 1 1.5 2

Figure 4: The ξ−dependence of the seven roots I - VII of the sample secular deter-

minant (3)
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Roots remain real in the Hermitian ξ → 0 limit (see Figure)

F0 = 0, F±,0 = ±
√

2, F±,± = ±
√

2±
√

2, ξ → 0.

ξcrit ≈ 1.15470.

five of the roots remain real for Z À 1,

F0 = 0, F±,0 = ±1, F±,+ = ±
√

3, ξ →∞.
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STRENGTHENING THE NON-HERMITICITY, ` = 3/8




iξ − F −1

−1 iξ − F −1

−1 −F −1

−1 −F −1

−1 −F −1

−1 −iξ − F −1

−1 −iξ − F







α0

α1

γ0

γ

γ∗0

α∗1

α∗0




= 0
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D =
[−F 6 − F 4

(
2 ξ2 − 6

)
+ F 2

(−ξ4 + 4 ξ2 − 10
)
+ 2 ξ4 + ξ2 + 4

]
F

(4)
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ξ

I

II

III

V

VI

VII

IV

F

-1.5

-1

-0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8 1

Figure 5: The ξ−dependence of the roots of the secular determinant (4)
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PENTADIAGONAL REAL REFORMULATION



−F −ξ −1 0

ξ −F 0 −1

−1 0 −F −ξ . . .

0 −1 ξ −F . . .

. . . . . . . . . −1 0

. . . . . . . . . 0 −1

−1 0 −F −ξ −1

0 −1 ξ −F 0

−2 0 −F







a0

b0

a1

b1

...

...

an

bn

γ




= 0.
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~ck = Uk

(
1

2
X

)
~c0 , X =




−F −ξ

ξ −F




, k = 0, 1, . . . , n + 1 .
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SUMMARY: RESULTS OBTAINED ON

• A. formalism

• B. physics

• C. feasibility
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PURPOSE AND KEY QUESTIONS ADDRESSED

• A. formalism (emphasis: generalized definitions)

• B. physics (the challenge of analytic continuation)

• C. feasibility (today: within matching method)
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CONCERNING FEASIBILITY:

• (a) of proofs (reality of energies)

– (i) square-well V (x) used (friendly math)

– (ii) Runge-Kutta x used (friendly phys)
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CONCERNING FEASIBILITY:

• (b) of model building

– (i) “realistic” shapes of V (x) (phys made useful)

– (ii) “realistic” shapes of paths x (math made flexible)
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CONCERNING ANALYTIC CONTINUATION:

• (a) in proofs

– (i) changing variables in SE (math kept friendly)

– (ii) rectified x (SFQM phys made friendly)
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CONCERNING ANALYTIC CONTINUATION:

• (b) in model building using tobogganic paths C(N)

– (i) bound states (topology-dependent phys)

– (ii) tobogganic scattering (math made challenging again)
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More detailed references:

I. Non-P-pseudo-Hermitian SQW

Miloslav Znojil (quant-ph/0601048):

Strengthened PT-symmetry with P 6= P†,

Phys. Lett. A 353 (2006) 463 - 468

was the first example (see later). Now, ∃ more:

M.Z.: J. Phys. A: Math. Gen. 39 (2006) 4047 - 4061

(asymm. coupling of channels)
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II. Models with unobservable coordinates x ∈ CC

(some of them called “quantum toboggans”):

Miloslav Znojil (quant-ph/0602231):

Quasi-exact minus-quartic oscillators

in strong-core regime

Phys. Lett. A 356 (2006) xxx

(available online 5 June 2006 - PTO for a picture)

.
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edge

edge

Im x

BB choice  

3sector S 

4sector S 

BG choice  

Re x

Figure 6: Complex curves of coordinates (quartic oscillator)
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.

III. Discrete SQW

Miloslav Znojil and Hendrik B. Geyer:

Non-existence of the charge operator

Phys. Lett. B, submitted, plus:

Miloslav Znojil (quant-ph/0605209):

J. Phys. A: Math. Gen. 39 (2006) xxx

(August special issue)
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